人脸表情识别的多尺度局部特征融合网络

Xusong Luo, J. Xiao, Aimin Xiong, Hongbin Zhang
{"title":"人脸表情识别的多尺度局部特征融合网络","authors":"Xusong Luo, J. Xiao, Aimin Xiong, Hongbin Zhang","doi":"10.1109/aemcse55572.2022.00146","DOIUrl":null,"url":null,"abstract":"To solve the problem that facial expression recognition (FER) system in actual application scenariosis always interfered by complex background which lead to low accuracy, we designed a multi-scale local feature fusion network (MSLFnet) to improve the performance of FER in actual application scenarios. Middle-level facial features map are extracted from the backbone, and the middle-level local feature is generated by a patch-level local attention module, the network can obtain richer facial expressions. Experiments is carried out on the FER datasets RAF-DB and FER+ to verify the efficacy of the network. Experimental results show that the accuracy of the proposed network on RAF-DB and FER+ is 2.5% and 1% higher than original ResNet-18, proving the effectiveness of MSLFnet.","PeriodicalId":309096,"journal":{"name":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Local Feature Fusion Network for Facial Expression Recognition\",\"authors\":\"Xusong Luo, J. Xiao, Aimin Xiong, Hongbin Zhang\",\"doi\":\"10.1109/aemcse55572.2022.00146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem that facial expression recognition (FER) system in actual application scenariosis always interfered by complex background which lead to low accuracy, we designed a multi-scale local feature fusion network (MSLFnet) to improve the performance of FER in actual application scenarios. Middle-level facial features map are extracted from the backbone, and the middle-level local feature is generated by a patch-level local attention module, the network can obtain richer facial expressions. Experiments is carried out on the FER datasets RAF-DB and FER+ to verify the efficacy of the network. Experimental results show that the accuracy of the proposed network on RAF-DB and FER+ is 2.5% and 1% higher than original ResNet-18, proving the effectiveness of MSLFnet.\",\"PeriodicalId\":309096,\"journal\":{\"name\":\"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aemcse55572.2022.00146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aemcse55572.2022.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对面部表情识别系统在实际应用场景中经常受到复杂背景的干扰而导致准确率低的问题,设计了一种多尺度局部特征融合网络(MSLFnet)来提高面部表情识别系统在实际应用场景中的性能。从主干提取中级面部特征图,并通过补丁级局部关注模块生成中级局部特征,网络可以获得更丰富的面部表情。在FER数据集RAF-DB和FER+上进行了实验,验证了该网络的有效性。实验结果表明,该网络在RAF-DB和FER+上的准确率分别比原始ResNet-18高2.5%和1%,证明了MSLFnet的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Local Feature Fusion Network for Facial Expression Recognition
To solve the problem that facial expression recognition (FER) system in actual application scenariosis always interfered by complex background which lead to low accuracy, we designed a multi-scale local feature fusion network (MSLFnet) to improve the performance of FER in actual application scenarios. Middle-level facial features map are extracted from the backbone, and the middle-level local feature is generated by a patch-level local attention module, the network can obtain richer facial expressions. Experiments is carried out on the FER datasets RAF-DB and FER+ to verify the efficacy of the network. Experimental results show that the accuracy of the proposed network on RAF-DB and FER+ is 2.5% and 1% higher than original ResNet-18, proving the effectiveness of MSLFnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信