基于激励的移动边缘学习资源分配

Mhd Saria Allahham, Amr Mohamed, H. Hassanein
{"title":"基于激励的移动边缘学习资源分配","authors":"Mhd Saria Allahham, Amr Mohamed, H. Hassanein","doi":"10.1109/LCN53696.2022.9843405","DOIUrl":null,"url":null,"abstract":"Mobile Edge Learning (MEL) is a learning paradigm that facilitates training of Machine Learning (ML) models over resource-constrained edge devices. MEL consists of an orchestrator, which represents the model owner of the learning task, and learners, which own the data locally. Enabling the learning process requires the model owner to motivate learners to train the ML model on their local data and allocate sufficient resources. The time limitations and the possible existence of multiple orchestrators open the doors for the resource allocation problem. As such, we model the incentive mechanism and resource allocation as a multi-round Stackelberg game, and propose a Payment-based Time Allocation (PBTA) algorithm to solve the game. In PBTA, orchestrators first determine the pricing, then the learners allocate each orchestrator a timeslot and determine the amount of data and resources for each orchestrator. Finally, we evaluate the PBTA performance and compare it against a recent state-of-the-art approach.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incentive-based Resource Allocation for Mobile Edge Learning\",\"authors\":\"Mhd Saria Allahham, Amr Mohamed, H. Hassanein\",\"doi\":\"10.1109/LCN53696.2022.9843405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Edge Learning (MEL) is a learning paradigm that facilitates training of Machine Learning (ML) models over resource-constrained edge devices. MEL consists of an orchestrator, which represents the model owner of the learning task, and learners, which own the data locally. Enabling the learning process requires the model owner to motivate learners to train the ML model on their local data and allocate sufficient resources. The time limitations and the possible existence of multiple orchestrators open the doors for the resource allocation problem. As such, we model the incentive mechanism and resource allocation as a multi-round Stackelberg game, and propose a Payment-based Time Allocation (PBTA) algorithm to solve the game. In PBTA, orchestrators first determine the pricing, then the learners allocate each orchestrator a timeslot and determine the amount of data and resources for each orchestrator. Finally, we evaluate the PBTA performance and compare it against a recent state-of-the-art approach.\",\"PeriodicalId\":303965,\"journal\":{\"name\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN53696.2022.9843405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动边缘学习(MEL)是一种学习范式,有助于在资源受限的边缘设备上训练机器学习(ML)模型。MEL由协调器和学习者组成,前者代表学习任务的模型所有者,后者在本地拥有数据。实现学习过程需要模型所有者激励学习者在其本地数据上训练ML模型并分配足够的资源。时间限制和可能存在的多个协调器为资源分配问题打开了大门。因此,我们将激励机制和资源分配建模为多轮Stackelberg博弈,并提出了一种基于支付的时间分配(PBTA)算法来求解该博弈。在PBTA中,编排者首先确定定价,然后学习者为每个编排者分配一个时间段,并为每个编排者确定数据和资源的数量。最后,我们评估了PBTA的性能,并将其与最近最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incentive-based Resource Allocation for Mobile Edge Learning
Mobile Edge Learning (MEL) is a learning paradigm that facilitates training of Machine Learning (ML) models over resource-constrained edge devices. MEL consists of an orchestrator, which represents the model owner of the learning task, and learners, which own the data locally. Enabling the learning process requires the model owner to motivate learners to train the ML model on their local data and allocate sufficient resources. The time limitations and the possible existence of multiple orchestrators open the doors for the resource allocation problem. As such, we model the incentive mechanism and resource allocation as a multi-round Stackelberg game, and propose a Payment-based Time Allocation (PBTA) algorithm to solve the game. In PBTA, orchestrators first determine the pricing, then the learners allocate each orchestrator a timeslot and determine the amount of data and resources for each orchestrator. Finally, we evaluate the PBTA performance and compare it against a recent state-of-the-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信