基于视频和Kinect数据分析的演讲技巧评估

Vanessa Echeverría, Allan Avendaño, K. Chiluiza, Aníbal Vásquez, X. Ochoa
{"title":"基于视频和Kinect数据分析的演讲技巧评估","authors":"Vanessa Echeverría, Allan Avendaño, K. Chiluiza, Aníbal Vásquez, X. Ochoa","doi":"10.1145/2666633.2666641","DOIUrl":null,"url":null,"abstract":"This paper identifies, by means of video and Kinect data, a set of predictors that estimate the presentation skills of 448 individual students. Two evaluation criteria were predicted: eye contact and posture and body language. Machine-learning evaluations resulted in models that predicted the performance level (good or poor) of the presenters with 68% and 63% of correctly classified instances, for eye contact and postures and body language criteria, respectively. Furthermore, the results suggest that certain features, such as arms movement and smoothness, provide high significance on predicting the level of development for presentation skills. The paper finishes with conclusions and related ideas for future work.","PeriodicalId":123577,"journal":{"name":"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Presentation Skills Estimation Based on Video and Kinect Data Analysis\",\"authors\":\"Vanessa Echeverría, Allan Avendaño, K. Chiluiza, Aníbal Vásquez, X. Ochoa\",\"doi\":\"10.1145/2666633.2666641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper identifies, by means of video and Kinect data, a set of predictors that estimate the presentation skills of 448 individual students. Two evaluation criteria were predicted: eye contact and posture and body language. Machine-learning evaluations resulted in models that predicted the performance level (good or poor) of the presenters with 68% and 63% of correctly classified instances, for eye contact and postures and body language criteria, respectively. Furthermore, the results suggest that certain features, such as arms movement and smoothness, provide high significance on predicting the level of development for presentation skills. The paper finishes with conclusions and related ideas for future work.\",\"PeriodicalId\":123577,\"journal\":{\"name\":\"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666633.2666641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666633.2666641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文通过视频和Kinect数据确定了一组预测因子,用于估计448名学生的演讲技巧。预测了两个评价标准:眼神交流、姿势和肢体语言。机器学习评估的结果是,模型预测了演讲者的表现水平(好或差),分别有68%和63%的正确分类实例,分别是眼神接触、姿势和肢体语言标准。此外,研究结果表明,某些特征,如手臂运动和平滑度,对预测陈述技能的发展水平具有很高的意义。最后,本文给出了结论和对今后工作的相关设想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presentation Skills Estimation Based on Video and Kinect Data Analysis
This paper identifies, by means of video and Kinect data, a set of predictors that estimate the presentation skills of 448 individual students. Two evaluation criteria were predicted: eye contact and posture and body language. Machine-learning evaluations resulted in models that predicted the performance level (good or poor) of the presenters with 68% and 63% of correctly classified instances, for eye contact and postures and body language criteria, respectively. Furthermore, the results suggest that certain features, such as arms movement and smoothness, provide high significance on predicting the level of development for presentation skills. The paper finishes with conclusions and related ideas for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信