{"title":"微波探伤","authors":"V. I. Matveev, A. Potapov","doi":"10.14489/td.2022.05.pp.042-047","DOIUrl":null,"url":null,"abstract":"The article provides a brief overview of methods of dielectric flaw detection using microradiowaves. The main types of inhomogeneities and defects detected by microwave flaw detectors are described. Control schemes with one-way and two-way access to the object of control are considered. Reflection flaw detectors are preferable when they are implemented in practice. The possibility of obtaining radio images of internal defects by scanning converters or using multielement receivers is shown.","PeriodicalId":432853,"journal":{"name":"Kontrol'. Diagnostika","volume":"54 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MICROWAVE FLAW DETECTION\",\"authors\":\"V. I. Matveev, A. Potapov\",\"doi\":\"10.14489/td.2022.05.pp.042-047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article provides a brief overview of methods of dielectric flaw detection using microradiowaves. The main types of inhomogeneities and defects detected by microwave flaw detectors are described. Control schemes with one-way and two-way access to the object of control are considered. Reflection flaw detectors are preferable when they are implemented in practice. The possibility of obtaining radio images of internal defects by scanning converters or using multielement receivers is shown.\",\"PeriodicalId\":432853,\"journal\":{\"name\":\"Kontrol'. Diagnostika\",\"volume\":\"54 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kontrol'. Diagnostika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14489/td.2022.05.pp.042-047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kontrol'. Diagnostika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/td.2022.05.pp.042-047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The article provides a brief overview of methods of dielectric flaw detection using microradiowaves. The main types of inhomogeneities and defects detected by microwave flaw detectors are described. Control schemes with one-way and two-way access to the object of control are considered. Reflection flaw detectors are preferable when they are implemented in practice. The possibility of obtaining radio images of internal defects by scanning converters or using multielement receivers is shown.