具有细粒度带宽控制的基于模型的应用程序自治管理器

Nasim Beigi Mohammadi, Mark Shtern, Marin Litoiu
{"title":"具有细粒度带宽控制的基于模型的应用程序自治管理器","authors":"Nasim Beigi Mohammadi, Mark Shtern, Marin Litoiu","doi":"10.23919/CNSM.2017.8255994","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and implement a machine learning based application autonomic management system that controls the bandwidth rates allocated to each scenario of a web application to postpone scaling out for as long as possible. Through experiments on Amazon AWS cloud, we demonstrate that the autonomic manager is able to quickly meet Service level Agreement (SLA) and reduce the SLA violations by 56% compared to a previous heuristic-based approach.","PeriodicalId":211611,"journal":{"name":"2017 13th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A model-based application autonomic manager with fine granular bandwidth control\",\"authors\":\"Nasim Beigi Mohammadi, Mark Shtern, Marin Litoiu\",\"doi\":\"10.23919/CNSM.2017.8255994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and implement a machine learning based application autonomic management system that controls the bandwidth rates allocated to each scenario of a web application to postpone scaling out for as long as possible. Through experiments on Amazon AWS cloud, we demonstrate that the autonomic manager is able to quickly meet Service level Agreement (SLA) and reduce the SLA violations by 56% compared to a previous heuristic-based approach.\",\"PeriodicalId\":211611,\"journal\":{\"name\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM.2017.8255994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM.2017.8255994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出并实现了一个基于机器学习的应用程序自治管理系统,该系统控制分配给web应用程序的每个场景的带宽速率,以尽可能长时间地推迟扩展。通过在亚马逊AWS云上的实验,我们证明了自治管理器能够快速满足服务水平协议(SLA),并且与之前基于启发式的方法相比,减少了56%的SLA违规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model-based application autonomic manager with fine granular bandwidth control
In this paper, we propose and implement a machine learning based application autonomic management system that controls the bandwidth rates allocated to each scenario of a web application to postpone scaling out for as long as possible. Through experiments on Amazon AWS cloud, we demonstrate that the autonomic manager is able to quickly meet Service level Agreement (SLA) and reduce the SLA violations by 56% compared to a previous heuristic-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信