基于retanet的海洋环境可见光与红外图像融合框架

F. Farahnakian, Jussi Poikonen, Markus Laurinen, D. Makris, J. Heikkonen
{"title":"基于retanet的海洋环境可见光与红外图像融合框架","authors":"F. Farahnakian, Jussi Poikonen, Markus Laurinen, D. Makris, J. Heikkonen","doi":"10.23919/fusion43075.2019.9011182","DOIUrl":null,"url":null,"abstract":"Safety and security are critical issues in maritime environment. Automatic and reliable object detection based on multi-sensor data fusion is one of the efficient way for improving these issues in intelligent systems. In this paper, we propose an early fusion framework to achieve a robust object detection. The framework firstly utilizes a fusion strategy to combine both visible and infrared images and generates fused images. The resulting fused images are then processed by a simple dense convolutional neural network based detector, RetinaNet, to predict multiple 2D box hypotheses and the infrared confidences. To evaluate the proposed framework, we collected a real marine dataset using a sensor system onboard a vessel in the Finnish archipelago. This system is used for developing autonomous vessels, and records data in a range of operation and climatic and light conditions. The experimental results show that the proposed fusion framework able to identify the interest of objects surrounding the vessel substantially better compared with the baseline approaches.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Visible and Infrared Image Fusion Framework based on RetinaNet for Marine Environment\",\"authors\":\"F. Farahnakian, Jussi Poikonen, Markus Laurinen, D. Makris, J. Heikkonen\",\"doi\":\"10.23919/fusion43075.2019.9011182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety and security are critical issues in maritime environment. Automatic and reliable object detection based on multi-sensor data fusion is one of the efficient way for improving these issues in intelligent systems. In this paper, we propose an early fusion framework to achieve a robust object detection. The framework firstly utilizes a fusion strategy to combine both visible and infrared images and generates fused images. The resulting fused images are then processed by a simple dense convolutional neural network based detector, RetinaNet, to predict multiple 2D box hypotheses and the infrared confidences. To evaluate the proposed framework, we collected a real marine dataset using a sensor system onboard a vessel in the Finnish archipelago. This system is used for developing autonomous vessels, and records data in a range of operation and climatic and light conditions. The experimental results show that the proposed fusion framework able to identify the interest of objects surrounding the vessel substantially better compared with the baseline approaches.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

安全与安保是海洋环境中的关键问题。基于多传感器数据融合的自动、可靠的目标检测是解决这些问题的有效途径之一。在本文中,我们提出了一个早期融合框架来实现鲁棒的目标检测。该框架首先利用融合策略将可见光和红外图像结合,生成融合图像。然后由一个简单的基于密集卷积神经网络的检测器(RetinaNet)对融合后的图像进行处理,以预测多个2D盒子假设和红外置信度。为了评估提出的框架,我们在芬兰群岛的一艘船上使用传感器系统收集了真实的海洋数据集。该系统用于开发自主船舶,并记录一系列操作、气候和光照条件下的数据。实验结果表明,与基线方法相比,所提出的融合框架能够更好地识别血管周围物体的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visible and Infrared Image Fusion Framework based on RetinaNet for Marine Environment
Safety and security are critical issues in maritime environment. Automatic and reliable object detection based on multi-sensor data fusion is one of the efficient way for improving these issues in intelligent systems. In this paper, we propose an early fusion framework to achieve a robust object detection. The framework firstly utilizes a fusion strategy to combine both visible and infrared images and generates fused images. The resulting fused images are then processed by a simple dense convolutional neural network based detector, RetinaNet, to predict multiple 2D box hypotheses and the infrared confidences. To evaluate the proposed framework, we collected a real marine dataset using a sensor system onboard a vessel in the Finnish archipelago. This system is used for developing autonomous vessels, and records data in a range of operation and climatic and light conditions. The experimental results show that the proposed fusion framework able to identify the interest of objects surrounding the vessel substantially better compared with the baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信