{"title":"级联分治:一种设计并行算法的技术","authors":"M. Atallah, R. Cole, M. Goodrich","doi":"10.1109/SFCS.1987.12","DOIUrl":null,"url":null,"abstract":"We present techniques for parallel divide-and-conquer, resulting in improved parallel algorithms for a number of problems. The problems for which we give improved algorithms include intersection detection, trapezoidal decomposition (hence, polygon triangulation), and planar point location (hence, Voronoi diagram construction). We also give efficient parallel algorithms for fractional cascading, 3-dimensional maxima, 2-set dominance counting, and visibility from a point. All of our algorithms run in O(log n) time with either a linear or sub-linear number of processors in the CREW PRAM model.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":"{\"title\":\"Cascading divide-and-conquer: A technique for designing parallel algorithms\",\"authors\":\"M. Atallah, R. Cole, M. Goodrich\",\"doi\":\"10.1109/SFCS.1987.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present techniques for parallel divide-and-conquer, resulting in improved parallel algorithms for a number of problems. The problems for which we give improved algorithms include intersection detection, trapezoidal decomposition (hence, polygon triangulation), and planar point location (hence, Voronoi diagram construction). We also give efficient parallel algorithms for fractional cascading, 3-dimensional maxima, 2-set dominance counting, and visibility from a point. All of our algorithms run in O(log n) time with either a linear or sub-linear number of processors in the CREW PRAM model.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"223\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cascading divide-and-conquer: A technique for designing parallel algorithms
We present techniques for parallel divide-and-conquer, resulting in improved parallel algorithms for a number of problems. The problems for which we give improved algorithms include intersection detection, trapezoidal decomposition (hence, polygon triangulation), and planar point location (hence, Voronoi diagram construction). We also give efficient parallel algorithms for fractional cascading, 3-dimensional maxima, 2-set dominance counting, and visibility from a point. All of our algorithms run in O(log n) time with either a linear or sub-linear number of processors in the CREW PRAM model.