基于动态和静态特征的广义回归神经网络人体步态识别

Luv Rustagi, Lokendra Kumar, G. Pillai
{"title":"基于动态和静态特征的广义回归神经网络人体步态识别","authors":"Luv Rustagi, Lokendra Kumar, G. Pillai","doi":"10.1109/ICMV.2009.70","DOIUrl":null,"url":null,"abstract":"Biometric Recognition using the behavioral modality of gait is an emerging research area. This paper describes a method for human gait recognition using Generalized Regression Neural Networks. The feature space is composed of a combination of dynamic (time-varying) gait signals and static body-shape parameters, extracted from binary silhouettes obtained after background subtraction from human gait sequences. The inputs to the neural network are obtained by performing Discrete Cosine Transform (DCT) on the feature space, followed by selection of transformed coefficients to construct compact vectors.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Human Gait Recognition Based on Dynamic and Static Features Using Generalized Regression Neural Network\",\"authors\":\"Luv Rustagi, Lokendra Kumar, G. Pillai\",\"doi\":\"10.1109/ICMV.2009.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric Recognition using the behavioral modality of gait is an emerging research area. This paper describes a method for human gait recognition using Generalized Regression Neural Networks. The feature space is composed of a combination of dynamic (time-varying) gait signals and static body-shape parameters, extracted from binary silhouettes obtained after background subtraction from human gait sequences. The inputs to the neural network are obtained by performing Discrete Cosine Transform (DCT) on the feature space, followed by selection of transformed coefficients to construct compact vectors.\",\"PeriodicalId\":315778,\"journal\":{\"name\":\"2009 Second International Conference on Machine Vision\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMV.2009.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于步态行为模式的生物特征识别是一个新兴的研究领域。本文介绍了一种基于广义回归神经网络的人体步态识别方法。该特征空间由动态(时变)步态信号和静态体型参数的组合组成,提取自人体步态序列经过背景减除后得到的二值轮廓。通过对特征空间进行离散余弦变换(DCT)获得神经网络的输入,然后选择变换后的系数来构造紧致向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Gait Recognition Based on Dynamic and Static Features Using Generalized Regression Neural Network
Biometric Recognition using the behavioral modality of gait is an emerging research area. This paper describes a method for human gait recognition using Generalized Regression Neural Networks. The feature space is composed of a combination of dynamic (time-varying) gait signals and static body-shape parameters, extracted from binary silhouettes obtained after background subtraction from human gait sequences. The inputs to the neural network are obtained by performing Discrete Cosine Transform (DCT) on the feature space, followed by selection of transformed coefficients to construct compact vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信