基于mfcc的多媒体资源高效编码音频索引系统分析

O. Mubarak, E. Ambikairajah, J. Epps
{"title":"基于mfcc的多媒体资源高效编码音频索引系统分析","authors":"O. Mubarak, E. Ambikairajah, J. Epps","doi":"10.1109/ISSPA.2005.1581014","DOIUrl":null,"url":null,"abstract":"Discrimination between speech and music signals is an important problem in efficient digital radio broadcasting, particularly for variable bit rate applications such as Internet radio. This paper presents a speech/music discrimination system based on a Mel frequency cepstral coefficient (MFCC) front end and a GMM classifier. This system can be used to select the optimum coding scheme for the current frame of an input signal without knowing a priori whether it contains speech-like or music-like characteristics. An analysis of speech and music error rates for different numbers of MFCCs (from 8 to 28) is presented. For the 46 minute evaluation database used in this experiment, an accuracy of up to 97.14% for music and 93.87% for speech can be attained.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Analysis of an MFCC-based audio indexing system for efficient coding of multimedia sources\",\"authors\":\"O. Mubarak, E. Ambikairajah, J. Epps\",\"doi\":\"10.1109/ISSPA.2005.1581014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrimination between speech and music signals is an important problem in efficient digital radio broadcasting, particularly for variable bit rate applications such as Internet radio. This paper presents a speech/music discrimination system based on a Mel frequency cepstral coefficient (MFCC) front end and a GMM classifier. This system can be used to select the optimum coding scheme for the current frame of an input signal without knowing a priori whether it contains speech-like or music-like characteristics. An analysis of speech and music error rates for different numbers of MFCCs (from 8 to 28) is presented. For the 46 minute evaluation database used in this experiment, an accuracy of up to 97.14% for music and 93.87% for speech can be attained.\",\"PeriodicalId\":385337,\"journal\":{\"name\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2005.1581014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

语音和音乐信号的区分是有效的数字无线电广播的一个重要问题,特别是对于像互联网广播这样的可变比特率应用。提出了一种基于Mel倒频谱系数(MFCC)前端和GMM分类器的语音/音乐识别系统。该系统可用于选择输入信号当前帧的最佳编码方案,而无需先验地知道它是否包含类语音或类音乐特征。分析了不同数量的mfccc(8 ~ 28)的语音和音乐错误率。对于本实验使用的46分钟评价数据库,音乐的准确率高达97.14%,语音的准确率高达93.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of an MFCC-based audio indexing system for efficient coding of multimedia sources
Discrimination between speech and music signals is an important problem in efficient digital radio broadcasting, particularly for variable bit rate applications such as Internet radio. This paper presents a speech/music discrimination system based on a Mel frequency cepstral coefficient (MFCC) front end and a GMM classifier. This system can be used to select the optimum coding scheme for the current frame of an input signal without knowing a priori whether it contains speech-like or music-like characteristics. An analysis of speech and music error rates for different numbers of MFCCs (from 8 to 28) is presented. For the 46 minute evaluation database used in this experiment, an accuracy of up to 97.14% for music and 93.87% for speech can be attained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信