{"title":"基于图信号处理的低速率非侵入式电器负荷监测","authors":"Bing Zhang, Shengjie Zhao, Qingjiang Shi, Rongqing Zhang","doi":"10.1109/SPAC49953.2019.237866","DOIUrl":null,"url":null,"abstract":"Thanks to the large-scale smart meters deployments around the world, non-intrusive appliance load monitoring (NILM) is receiving popularity. It aims to disaggregate the total electricity load of a home into individual appliances without resorting to any specific appliance power monitors. NILM is worthy of broad attention owing to its facilitation in energy savings. This paper regards NILM as a classification task and proposes a two-step method based on graph signal processing (GSP). In the first step, a smoothest solution is obtained by minimizing the regularization term. In the second step, gradient projection method, which uses the obtained minimizer as a start point, is adopted to optimize the while objective function, where NILM is regarded as a constrained nonlinear programming problem. The experiment results based on the open-access data set REDD clearly demonstrate that the proposed GSP-based method achieves improved performance compared with other state-of-the-art low-rate NILM approaches.","PeriodicalId":410003,"journal":{"name":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Rate Non-Intrusive Appliance Load Monitoring Based on Graph Signal Processing\",\"authors\":\"Bing Zhang, Shengjie Zhao, Qingjiang Shi, Rongqing Zhang\",\"doi\":\"10.1109/SPAC49953.2019.237866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to the large-scale smart meters deployments around the world, non-intrusive appliance load monitoring (NILM) is receiving popularity. It aims to disaggregate the total electricity load of a home into individual appliances without resorting to any specific appliance power monitors. NILM is worthy of broad attention owing to its facilitation in energy savings. This paper regards NILM as a classification task and proposes a two-step method based on graph signal processing (GSP). In the first step, a smoothest solution is obtained by minimizing the regularization term. In the second step, gradient projection method, which uses the obtained minimizer as a start point, is adopted to optimize the while objective function, where NILM is regarded as a constrained nonlinear programming problem. The experiment results based on the open-access data set REDD clearly demonstrate that the proposed GSP-based method achieves improved performance compared with other state-of-the-art low-rate NILM approaches.\",\"PeriodicalId\":410003,\"journal\":{\"name\":\"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC49953.2019.237866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC49953.2019.237866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Rate Non-Intrusive Appliance Load Monitoring Based on Graph Signal Processing
Thanks to the large-scale smart meters deployments around the world, non-intrusive appliance load monitoring (NILM) is receiving popularity. It aims to disaggregate the total electricity load of a home into individual appliances without resorting to any specific appliance power monitors. NILM is worthy of broad attention owing to its facilitation in energy savings. This paper regards NILM as a classification task and proposes a two-step method based on graph signal processing (GSP). In the first step, a smoothest solution is obtained by minimizing the regularization term. In the second step, gradient projection method, which uses the obtained minimizer as a start point, is adopted to optimize the while objective function, where NILM is regarded as a constrained nonlinear programming problem. The experiment results based on the open-access data set REDD clearly demonstrate that the proposed GSP-based method achieves improved performance compared with other state-of-the-art low-rate NILM approaches.