{"title":"非有序离散向量数据上BoND-Tree索引更新方法研究","authors":"R. Cherniak, Qiang Zhu, S. Pramanik","doi":"10.29007/3zq4","DOIUrl":null,"url":null,"abstract":"There is an increasing demand from numerous applications such as bioinformatics and cybersecurity to efficiently process various types of queries on datasets in a multidimensional Non-ordered Discrete Data Space (NDDS). An NDDS consists of vectors with values coming from a non-ordered discrete domain for each dimension. The BoND-tree index was recently developed to efficiently process box queries on a large dataset from an NDDS on disk. The original work of the BoND-tree focused on developing the index construction and query algorithms. No work has been reported on exploring efficient and effective update strategies for the BoND-tree. In this paper, we study two update methods based on two different strategies for updating the index tree in an NDDS. Our study shows that using the bottom-up update method can provide improved efficiency, comparing to the traditional top-down update method, especially when the number of dimensions for a vector that need to be updated is small. On the other hand, our study also shows that the two update methods have a comparable effectiveness, which indicates that the bottom-up update method is generally more advantageous.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Update Methods for BoND-Tree Index on Non-ordered Discrete Vector Data\",\"authors\":\"R. Cherniak, Qiang Zhu, S. Pramanik\",\"doi\":\"10.29007/3zq4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing demand from numerous applications such as bioinformatics and cybersecurity to efficiently process various types of queries on datasets in a multidimensional Non-ordered Discrete Data Space (NDDS). An NDDS consists of vectors with values coming from a non-ordered discrete domain for each dimension. The BoND-tree index was recently developed to efficiently process box queries on a large dataset from an NDDS on disk. The original work of the BoND-tree focused on developing the index construction and query algorithms. No work has been reported on exploring efficient and effective update strategies for the BoND-tree. In this paper, we study two update methods based on two different strategies for updating the index tree in an NDDS. Our study shows that using the bottom-up update method can provide improved efficiency, comparing to the traditional top-down update method, especially when the number of dimensions for a vector that need to be updated is small. On the other hand, our study also shows that the two update methods have a comparable effectiveness, which indicates that the bottom-up update method is generally more advantageous.\",\"PeriodicalId\":264035,\"journal\":{\"name\":\"International Conference on Computers and Their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/3zq4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/3zq4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Update Methods for BoND-Tree Index on Non-ordered Discrete Vector Data
There is an increasing demand from numerous applications such as bioinformatics and cybersecurity to efficiently process various types of queries on datasets in a multidimensional Non-ordered Discrete Data Space (NDDS). An NDDS consists of vectors with values coming from a non-ordered discrete domain for each dimension. The BoND-tree index was recently developed to efficiently process box queries on a large dataset from an NDDS on disk. The original work of the BoND-tree focused on developing the index construction and query algorithms. No work has been reported on exploring efficient and effective update strategies for the BoND-tree. In this paper, we study two update methods based on two different strategies for updating the index tree in an NDDS. Our study shows that using the bottom-up update method can provide improved efficiency, comparing to the traditional top-down update method, especially when the number of dimensions for a vector that need to be updated is small. On the other hand, our study also shows that the two update methods have a comparable effectiveness, which indicates that the bottom-up update method is generally more advantageous.