矩形锚杆持力的试验与数值研究

K. Toh, Yusuke Fukumoto, T. Yoshikawa
{"title":"矩形锚杆持力的试验与数值研究","authors":"K. Toh, Yusuke Fukumoto, T. Yoshikawa","doi":"10.1115/OMAE2018-77814","DOIUrl":null,"url":null,"abstract":"This paper discusses the experimental and numerical investigations for the holding power of rectangular-shaped anchors. As the offshore developments are promoted, the mooring systems are often used as the station keeping systems of the marine floating structures. From a viewpoint of the energy consumption, the mechanical mooring systems with anchors are better than the dynamic mooring systems with thrusters. Up to now, however, the research and development regarding the mooring systems with the high holding anchors in the deep sea area, especially more than 500 m in depth, have hardly been carried out in Japan.\n In most cases, the conventional anchor shapes have experimentally and/or empirically been decided. In addition, only a few studies which relate the numerical analysis to the experimental test have been performed for the holding power. In order to obtain the optimal shape of anchors theoretically, therefore, the purpose of this study is to develop the estimation method for the holding power and to clarify the penetration mechanism of anchors in soil.\n In this paper, a series of experiments utilizing the small-sized anchor model is conducted. Here, the fluke shape of specimen is modeled by the rectangular flat plate for simplicity. From several experiments varying the geometric characteristics of the anchor model, the experimental results, e.g., the history of the holding power, the penetration depth, and the fluke surface angle at the maximum holding power, are obtained. Furthermore, the numerical simulation to evaluate the holding power is also carried out using the dynamic explicit non-linear finite element analysis (NLFEA) code, LS-DYNA, as well as the in-house distinct element method (DEM) code. From the comparison between the numerical results and the experimental results, the calculation accuracy is verified.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Numerical Study on Holding Power of Rectangular-Shaped Anchors\",\"authors\":\"K. Toh, Yusuke Fukumoto, T. Yoshikawa\",\"doi\":\"10.1115/OMAE2018-77814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the experimental and numerical investigations for the holding power of rectangular-shaped anchors. As the offshore developments are promoted, the mooring systems are often used as the station keeping systems of the marine floating structures. From a viewpoint of the energy consumption, the mechanical mooring systems with anchors are better than the dynamic mooring systems with thrusters. Up to now, however, the research and development regarding the mooring systems with the high holding anchors in the deep sea area, especially more than 500 m in depth, have hardly been carried out in Japan.\\n In most cases, the conventional anchor shapes have experimentally and/or empirically been decided. In addition, only a few studies which relate the numerical analysis to the experimental test have been performed for the holding power. In order to obtain the optimal shape of anchors theoretically, therefore, the purpose of this study is to develop the estimation method for the holding power and to clarify the penetration mechanism of anchors in soil.\\n In this paper, a series of experiments utilizing the small-sized anchor model is conducted. Here, the fluke shape of specimen is modeled by the rectangular flat plate for simplicity. From several experiments varying the geometric characteristics of the anchor model, the experimental results, e.g., the history of the holding power, the penetration depth, and the fluke surface angle at the maximum holding power, are obtained. Furthermore, the numerical simulation to evaluate the holding power is also carried out using the dynamic explicit non-linear finite element analysis (NLFEA) code, LS-DYNA, as well as the in-house distinct element method (DEM) code. From the comparison between the numerical results and the experimental results, the calculation accuracy is verified.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对矩形锚杆的持力进行了试验和数值研究。随着海洋开发的不断推进,系泊系统经常被用作海洋浮式结构物的站位保持系统。从能源消耗的角度来看,机械系泊系统的锚优于动力系泊系统的推力器。然而,到目前为止,日本对深海,特别是500米以上海域的高持锚系泊系统的研究和开发还很少。在大多数情况下,传统的锚形是通过实验和/或经验确定的。此外,将数值分析与实验测试相结合的研究很少。因此,为了从理论上获得锚杆的最佳形状,本研究的目的是建立锚杆持力的估计方法,并阐明锚杆在土壤中的渗透机理。本文利用小尺度锚模型进行了一系列试验。为简便起见,本文采用矩形平板来模拟试件的吸片形状。通过多次改变锚模型几何特性的实验,得到了最大持力时的持力历史、侵彻深度和吸片面角等实验结果。此外,采用动态显式非线性有限元分析(NLFEA)程序、LS-DYNA程序和内部离散元法(DEM)程序对持力进行了数值模拟。通过数值结果与实验结果的比较,验证了计算的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Numerical Study on Holding Power of Rectangular-Shaped Anchors
This paper discusses the experimental and numerical investigations for the holding power of rectangular-shaped anchors. As the offshore developments are promoted, the mooring systems are often used as the station keeping systems of the marine floating structures. From a viewpoint of the energy consumption, the mechanical mooring systems with anchors are better than the dynamic mooring systems with thrusters. Up to now, however, the research and development regarding the mooring systems with the high holding anchors in the deep sea area, especially more than 500 m in depth, have hardly been carried out in Japan. In most cases, the conventional anchor shapes have experimentally and/or empirically been decided. In addition, only a few studies which relate the numerical analysis to the experimental test have been performed for the holding power. In order to obtain the optimal shape of anchors theoretically, therefore, the purpose of this study is to develop the estimation method for the holding power and to clarify the penetration mechanism of anchors in soil. In this paper, a series of experiments utilizing the small-sized anchor model is conducted. Here, the fluke shape of specimen is modeled by the rectangular flat plate for simplicity. From several experiments varying the geometric characteristics of the anchor model, the experimental results, e.g., the history of the holding power, the penetration depth, and the fluke surface angle at the maximum holding power, are obtained. Furthermore, the numerical simulation to evaluate the holding power is also carried out using the dynamic explicit non-linear finite element analysis (NLFEA) code, LS-DYNA, as well as the in-house distinct element method (DEM) code. From the comparison between the numerical results and the experimental results, the calculation accuracy is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信