自动音乐转录使用低秩非负矩阵分解

Cian O'Brien, Mark D. Plumbley
{"title":"自动音乐转录使用低秩非负矩阵分解","authors":"Cian O'Brien, Mark D. Plumbley","doi":"10.23919/EUSIPCO.2017.8081529","DOIUrl":null,"url":null,"abstract":"Automatic Music Transcription (AMT) is concerned with the problem of producing the pitch content of a piece of music given a recorded signal. Many methods rely on sparse or low rank models, where the observed magnitude spectra are represented as a linear combination of dictionary atoms corresponding to individual pitches. Some of the most successful approaches use Non-negative Matrix Decomposition (NMD) or Factorization (NMF), which can be used to learn a dictionary and pitch activation matrix from a given signal. Here we introduce a further refinement of NMD in which we assume the transcription itself is approximately low rank. The intuition behind this approach is that the total number of distinct activation patterns should be relatively small since the pitch content between adjacent frames should be similar. A rank penalty is introduced into the NMD objective function and solved using an iterative algorithm based on Singular Value thresholding. We find that the low rank assumption leads to a significant increase in performance compared to NMD using β-divergence on a standard AMT dataset.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic music transcription using low rank non-negative matrix decomposition\",\"authors\":\"Cian O'Brien, Mark D. Plumbley\",\"doi\":\"10.23919/EUSIPCO.2017.8081529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Music Transcription (AMT) is concerned with the problem of producing the pitch content of a piece of music given a recorded signal. Many methods rely on sparse or low rank models, where the observed magnitude spectra are represented as a linear combination of dictionary atoms corresponding to individual pitches. Some of the most successful approaches use Non-negative Matrix Decomposition (NMD) or Factorization (NMF), which can be used to learn a dictionary and pitch activation matrix from a given signal. Here we introduce a further refinement of NMD in which we assume the transcription itself is approximately low rank. The intuition behind this approach is that the total number of distinct activation patterns should be relatively small since the pitch content between adjacent frames should be similar. A rank penalty is introduced into the NMD objective function and solved using an iterative algorithm based on Singular Value thresholding. We find that the low rank assumption leads to a significant increase in performance compared to NMD using β-divergence on a standard AMT dataset.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自动音乐转录(AMT)关注的问题是在给定录制信号的情况下产生一段音乐的音高内容。许多方法依赖于稀疏或低阶模型,其中观测到的星等光谱被表示为对应于单个音高的字典原子的线性组合。一些最成功的方法使用非负矩阵分解(NMD)或因数分解(NMF),它们可以用来从给定信号中学习字典和基音激活矩阵。在这里,我们引入了NMD的进一步细化,其中我们假设转录本身大约是低秩的。这种方法背后的直觉是,不同激活模式的总数应该相对较少,因为相邻帧之间的音高内容应该相似。在NMD目标函数中引入秩惩罚,采用基于奇异值阈值的迭代算法求解。我们发现,与在标准AMT数据集上使用β-散度的NMD相比,低秩假设导致性能显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic music transcription using low rank non-negative matrix decomposition
Automatic Music Transcription (AMT) is concerned with the problem of producing the pitch content of a piece of music given a recorded signal. Many methods rely on sparse or low rank models, where the observed magnitude spectra are represented as a linear combination of dictionary atoms corresponding to individual pitches. Some of the most successful approaches use Non-negative Matrix Decomposition (NMD) or Factorization (NMF), which can be used to learn a dictionary and pitch activation matrix from a given signal. Here we introduce a further refinement of NMD in which we assume the transcription itself is approximately low rank. The intuition behind this approach is that the total number of distinct activation patterns should be relatively small since the pitch content between adjacent frames should be similar. A rank penalty is introduced into the NMD objective function and solved using an iterative algorithm based on Singular Value thresholding. We find that the low rank assumption leads to a significant increase in performance compared to NMD using β-divergence on a standard AMT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信