关于随机利率市场的最坏情况方法的说明。

Dariusz Zawisza
{"title":"关于随机利率市场的最坏情况方法的说明。","authors":"Dariusz Zawisza","doi":"10.4064/am2348-2-2018","DOIUrl":null,"url":null,"abstract":"We solve robust optimization problem and show the example of the market model for which the worst case measure is not a martingale measure. In our model the instantaneous interest rate is determined by the Hull-White model and the investor employs the HARA utility to measure his satisfaction.To protect against the model uncertainty he uses the worst case measure approach. The problem is formulated as a stochastic game between the investor and the market from the other side. PDE methods are used to find the saddle point and the precise verification argument is provided.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on the worst case approach for a market with a stochastic interest rate.\",\"authors\":\"Dariusz Zawisza\",\"doi\":\"10.4064/am2348-2-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve robust optimization problem and show the example of the market model for which the worst case measure is not a martingale measure. In our model the instantaneous interest rate is determined by the Hull-White model and the investor employs the HARA utility to measure his satisfaction.To protect against the model uncertainty he uses the worst case measure approach. The problem is formulated as a stochastic game between the investor and the market from the other side. PDE methods are used to find the saddle point and the precise verification argument is provided.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2348-2-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2348-2-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了鲁棒优化问题,并给出了最坏情况测度不是鞅测度的市场模型的例子。在我们的模型中,瞬时利率由赫尔-怀特模型决定,投资者使用HARA效用来衡量其满意度。为了防止模型的不确定性,他使用了最坏情况测量方法。这个问题被表述为投资者和市场之间的随机博弈。采用偏微分方程方法求鞍点,并给出了精确的验证参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the worst case approach for a market with a stochastic interest rate.
We solve robust optimization problem and show the example of the market model for which the worst case measure is not a martingale measure. In our model the instantaneous interest rate is determined by the Hull-White model and the investor employs the HARA utility to measure his satisfaction.To protect against the model uncertainty he uses the worst case measure approach. The problem is formulated as a stochastic game between the investor and the market from the other side. PDE methods are used to find the saddle point and the precise verification argument is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信