演化时间提议的精确时间动作定位

Haonan Qiu, Yingbin Zheng, Hao Ye, Yao Lu, Feng Wang, Liang He
{"title":"演化时间提议的精确时间动作定位","authors":"Haonan Qiu, Yingbin Zheng, Hao Ye, Yao Lu, Feng Wang, Liang He","doi":"10.1145/3206025.3206029","DOIUrl":null,"url":null,"abstract":"Locating actions in long untrimmed videos has been a challenging problem in video content analysis. The performances of existing action localization approaches remain unsatisfactory in precisely determining the beginning and the end of an action. Imitating the human perception procedure with observations and refinements, we propose a novel three-phase action localization framework. Our framework is embedded with an Actionness Network to generate initial proposals through frame-wise similarity grouping, and then a Refinement Network to conduct boundary adjustment on these proposals. Finally, the refined proposals are sent to a Localization Network for further fine-grained location regression. The whole process can be deemed as multi-stage refinement using a novel non-local pyramid feature under various temporal granularities. We evaluate our framework on THUMOS14 benchmark and obtain a significant improvement over the state-of-the-arts approaches. Specifically, the performance gain is remarkable under precise localization with high IoU thresholds. Our proposed framework achieves mAP@IoU=0.5 of 34.2%.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Precise Temporal Action Localization by Evolving Temporal Proposals\",\"authors\":\"Haonan Qiu, Yingbin Zheng, Hao Ye, Yao Lu, Feng Wang, Liang He\",\"doi\":\"10.1145/3206025.3206029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locating actions in long untrimmed videos has been a challenging problem in video content analysis. The performances of existing action localization approaches remain unsatisfactory in precisely determining the beginning and the end of an action. Imitating the human perception procedure with observations and refinements, we propose a novel three-phase action localization framework. Our framework is embedded with an Actionness Network to generate initial proposals through frame-wise similarity grouping, and then a Refinement Network to conduct boundary adjustment on these proposals. Finally, the refined proposals are sent to a Localization Network for further fine-grained location regression. The whole process can be deemed as multi-stage refinement using a novel non-local pyramid feature under various temporal granularities. We evaluate our framework on THUMOS14 benchmark and obtain a significant improvement over the state-of-the-arts approaches. Specifically, the performance gain is remarkable under precise localization with high IoU thresholds. Our proposed framework achieves mAP@IoU=0.5 of 34.2%.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在视频内容分析中,长视频中动作的定位一直是一个具有挑战性的问题。现有的动作定位方法在精确确定动作的开始和结束方面的性能仍然不理想。通过对人类感知过程的观察和改进,我们提出了一种新的三阶段动作定位框架。我们的框架嵌入了一个行动网络,通过框架相似度分组生成初始建议,然后是一个细化网络,对这些建议进行边界调整。最后,将改进后的建议发送到定位网络进行进一步的细粒度定位回归。整个过程可以看作是利用一种新的非局部金字塔特征在不同时间粒度下的多阶段细化。我们在THUMOS14基准上评估了我们的框架,并获得了比最先进方法的重大改进。具体来说,在高IoU阈值的精确定位下,性能增益是显著的。我们提出的框架达到mAP@IoU=0.5的34.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise Temporal Action Localization by Evolving Temporal Proposals
Locating actions in long untrimmed videos has been a challenging problem in video content analysis. The performances of existing action localization approaches remain unsatisfactory in precisely determining the beginning and the end of an action. Imitating the human perception procedure with observations and refinements, we propose a novel three-phase action localization framework. Our framework is embedded with an Actionness Network to generate initial proposals through frame-wise similarity grouping, and then a Refinement Network to conduct boundary adjustment on these proposals. Finally, the refined proposals are sent to a Localization Network for further fine-grained location regression. The whole process can be deemed as multi-stage refinement using a novel non-local pyramid feature under various temporal granularities. We evaluate our framework on THUMOS14 benchmark and obtain a significant improvement over the state-of-the-arts approaches. Specifically, the performance gain is remarkable under precise localization with high IoU thresholds. Our proposed framework achieves mAP@IoU=0.5 of 34.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信