基于立体视觉的形变测量中散斑匹配并行加速算法优化

Yunhe Liu, Guiyang Zhang, Lili Wang, Jing Wang, Zijian Zhu
{"title":"基于立体视觉的形变测量中散斑匹配并行加速算法优化","authors":"Yunhe Liu, Guiyang Zhang, Lili Wang, Jing Wang, Zijian Zhu","doi":"10.1145/3483845.3483889","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the efficiency of speckle match in vision deformation measurement, upon which the CUDA programming architecture, combined with the Visual Studio platform and Mex script files is utilized to implement parallel operations. With the aid of compiling the GPU parallel mode of the CUDA source program through NVCC, the scheme of speckle matching parallel computing are given, which is crucial to improve the real-time performance of vision-based deformation measurement. Consequently, the method in this paper completes the efficient calculation of match of the speckle image sub-regions in the three-dimensional deformation measurement. The proposed strategy solves the obstacle problem when the Mex script and different programming languages interact, and is not restricted by overloaded functions, so that the overall computing performance of the deformation measurement program reaches a better state. Lastly, the experimental results show that the speckle matching has achieved a calculation speedup ratio of 20.39 times.","PeriodicalId":134636,"journal":{"name":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Accelerated Algorithm Optimization for Speckle Matching in Deformation Measurement Based on Stereo Vision\",\"authors\":\"Yunhe Liu, Guiyang Zhang, Lili Wang, Jing Wang, Zijian Zhu\",\"doi\":\"10.1145/3483845.3483889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the efficiency of speckle match in vision deformation measurement, upon which the CUDA programming architecture, combined with the Visual Studio platform and Mex script files is utilized to implement parallel operations. With the aid of compiling the GPU parallel mode of the CUDA source program through NVCC, the scheme of speckle matching parallel computing are given, which is crucial to improve the real-time performance of vision-based deformation measurement. Consequently, the method in this paper completes the efficient calculation of match of the speckle image sub-regions in the three-dimensional deformation measurement. The proposed strategy solves the obstacle problem when the Mex script and different programming languages interact, and is not restricted by overloaded functions, so that the overall computing performance of the deformation measurement program reaches a better state. Lastly, the experimental results show that the speckle matching has achieved a calculation speedup ratio of 20.39 times.\",\"PeriodicalId\":134636,\"journal\":{\"name\":\"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3483845.3483889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3483845.3483889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了视觉变形测量中散斑匹配的效率问题,在此基础上利用CUDA编程架构,结合Visual Studio平台和Mex脚本文件实现并行运算。通过NVCC编译CUDA源程序的GPU并行模式,给出了散斑匹配并行计算方案,这对提高基于视觉的变形测量的实时性至关重要。因此,本文方法完成了三维变形测量中散斑图像子区域匹配的高效计算。该策略解决了Mex脚本与不同编程语言交互时的障碍问题,且不受重载函数的限制,使变形测量程序的整体计算性能达到较好的状态。最后,实验结果表明,散斑匹配的计算加速比达到了20.39倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Accelerated Algorithm Optimization for Speckle Matching in Deformation Measurement Based on Stereo Vision
This paper is concerned with the efficiency of speckle match in vision deformation measurement, upon which the CUDA programming architecture, combined with the Visual Studio platform and Mex script files is utilized to implement parallel operations. With the aid of compiling the GPU parallel mode of the CUDA source program through NVCC, the scheme of speckle matching parallel computing are given, which is crucial to improve the real-time performance of vision-based deformation measurement. Consequently, the method in this paper completes the efficient calculation of match of the speckle image sub-regions in the three-dimensional deformation measurement. The proposed strategy solves the obstacle problem when the Mex script and different programming languages interact, and is not restricted by overloaded functions, so that the overall computing performance of the deformation measurement program reaches a better state. Lastly, the experimental results show that the speckle matching has achieved a calculation speedup ratio of 20.39 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信