利用子空间投影的部分傅立叶重构

K. Uma, C. Kesavadas, J. S. Paul
{"title":"利用子空间投影的部分傅立叶重构","authors":"K. Uma, C. Kesavadas, J. S. Paul","doi":"10.1109/NCVPRIPG.2013.6776211","DOIUrl":null,"url":null,"abstract":"Scan time reduction in MRI can be achieved by partial k-space reconstruction. Truncation of the k-space results in generation of artifacts in the reconstructed image. A subspace projection algorithm is developed for artifact-free reconstruction of sparse MRI. The algorithm is applied to a frequency weighted k-space, which fits into a signal-space model for sparse MR images. The application is illustrated using Magnetic Resonance Angiogram (MRA).","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Fourier reconstruction using subspace projection\",\"authors\":\"K. Uma, C. Kesavadas, J. S. Paul\",\"doi\":\"10.1109/NCVPRIPG.2013.6776211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scan time reduction in MRI can be achieved by partial k-space reconstruction. Truncation of the k-space results in generation of artifacts in the reconstructed image. A subspace projection algorithm is developed for artifact-free reconstruction of sparse MRI. The algorithm is applied to a frequency weighted k-space, which fits into a signal-space model for sparse MR images. The application is illustrated using Magnetic Resonance Angiogram (MRA).\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过部分k空间重建可以减少MRI扫描时间。截断k空间会在重建图像中产生伪影。提出了一种用于稀疏核磁共振图像无伪影重建的子空间投影算法。该算法应用于频率加权k空间,适合稀疏MR图像的信号空间模型。应用磁共振血管造影(MRA)说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Fourier reconstruction using subspace projection
Scan time reduction in MRI can be achieved by partial k-space reconstruction. Truncation of the k-space results in generation of artifacts in the reconstructed image. A subspace projection algorithm is developed for artifact-free reconstruction of sparse MRI. The algorithm is applied to a frequency weighted k-space, which fits into a signal-space model for sparse MR images. The application is illustrated using Magnetic Resonance Angiogram (MRA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信