纳米结构的形状和尺寸对原子和分子传输的影响

E. Kalashnikov, I. Tolstikhin, N. Belova
{"title":"纳米结构的形状和尺寸对原子和分子传输的影响","authors":"E. Kalashnikov, I. Tolstikhin, N. Belova","doi":"10.4028/www.scientific.net/DF.27.115","DOIUrl":null,"url":null,"abstract":"The discrete Frenkel-Kontorova model for the movement of a foreign atom in a solid, obtained in the local chains approximation, led to the movement of the atom in the Frenkel-Kontorova (F-K) soliton form. This model made it possible to reveal the structure of the F-K soliton, to design the shapes of nanostructures and to take into account their influence on the F-K soliton. The transition to field variables leads the Frenkel-Kontorova equation to the sine-Gordon equation for the displacement field of an atom having solutions also in the form of a soliton. This equation and its solution (soliton) contains coefficients depending on the shape and size of nanostructures. The transition to the sine-Gordon equation allowed us to use the results of Theodorakopoulos 's works related to the consideration of the interaction of elastic vibration modes with a soliton. This made it possible to calculate the diffusion coefficient of the soliton and find the dependence of the diffusion coefficient on the shape and size of nanostructures and temperature.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of the Shape and Size of the Nanostructures to the Atoms and Molecules Transport\",\"authors\":\"E. Kalashnikov, I. Tolstikhin, N. Belova\",\"doi\":\"10.4028/www.scientific.net/DF.27.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete Frenkel-Kontorova model for the movement of a foreign atom in a solid, obtained in the local chains approximation, led to the movement of the atom in the Frenkel-Kontorova (F-K) soliton form. This model made it possible to reveal the structure of the F-K soliton, to design the shapes of nanostructures and to take into account their influence on the F-K soliton. The transition to field variables leads the Frenkel-Kontorova equation to the sine-Gordon equation for the displacement field of an atom having solutions also in the form of a soliton. This equation and its solution (soliton) contains coefficients depending on the shape and size of nanostructures. The transition to the sine-Gordon equation allowed us to use the results of Theodorakopoulos 's works related to the consideration of the interaction of elastic vibration modes with a soliton. This made it possible to calculate the diffusion coefficient of the soliton and find the dependence of the diffusion coefficient on the shape and size of nanostructures and temperature.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.27.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.27.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在局部链近似下得到的固体中外来原子运动的离散Frenkel-Kontorova模型,导致原子以Frenkel-Kontorova (F-K)孤子形式运动。该模型可以揭示F-K孤子的结构,设计纳米结构的形状,并考虑它们对F-K孤子的影响。对场变量的转换将Frenkel-Kontorova方程引入到sin - gordon方程,该方程用于原子的位移场,其解也以孤子的形式存在。该方程及其解(孤子)包含取决于纳米结构形状和尺寸的系数。转换到正弦戈登方程使我们能够使用Theodorakopoulos的有关考虑弹性振动模态与孤子相互作用的工作的结果。这使得计算孤子的扩散系数成为可能,并找到扩散系数与纳米结构的形状和尺寸以及温度的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of the Shape and Size of the Nanostructures to the Atoms and Molecules Transport
The discrete Frenkel-Kontorova model for the movement of a foreign atom in a solid, obtained in the local chains approximation, led to the movement of the atom in the Frenkel-Kontorova (F-K) soliton form. This model made it possible to reveal the structure of the F-K soliton, to design the shapes of nanostructures and to take into account their influence on the F-K soliton. The transition to field variables leads the Frenkel-Kontorova equation to the sine-Gordon equation for the displacement field of an atom having solutions also in the form of a soliton. This equation and its solution (soliton) contains coefficients depending on the shape and size of nanostructures. The transition to the sine-Gordon equation allowed us to use the results of Theodorakopoulos 's works related to the consideration of the interaction of elastic vibration modes with a soliton. This made it possible to calculate the diffusion coefficient of the soliton and find the dependence of the diffusion coefficient on the shape and size of nanostructures and temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信