削减对双边的操作

T. M. Ferguson
{"title":"削减对双边的操作","authors":"T. M. Ferguson","doi":"10.1109/ISMVL.2015.14","DOIUrl":null,"url":null,"abstract":"In this paper, Melvin Fitting's notion of a \"cut-down\" operation on a bilattice is considered. It is shown that the logic of cut-down operations on bilattices is equivalent to Harry Deutsch's four-valued Sfde, demonstrating that Sfde is as intimately connected to the theory of bilattices as is the Dunn-Belnap logic Efde. The paper concludes by observing that the \"not ¬\" operation of Carlos Damásio and Luís Pereira serves as a cut-down in Fitting's sense and that the logic of Damásio-Pereira cut-down operations on the bilattice NINE is equivalent to Richard Angell's AC.","PeriodicalId":118417,"journal":{"name":"2015 IEEE International Symposium on Multiple-Valued Logic","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cut-Down Operations on Bilattices\",\"authors\":\"T. M. Ferguson\",\"doi\":\"10.1109/ISMVL.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Melvin Fitting's notion of a \\\"cut-down\\\" operation on a bilattice is considered. It is shown that the logic of cut-down operations on bilattices is equivalent to Harry Deutsch's four-valued Sfde, demonstrating that Sfde is as intimately connected to the theory of bilattices as is the Dunn-Belnap logic Efde. The paper concludes by observing that the \\\"not ¬\\\" operation of Carlos Damásio and Luís Pereira serves as a cut-down in Fitting's sense and that the logic of Damásio-Pereira cut-down operations on the bilattice NINE is equivalent to Richard Angell's AC.\",\"PeriodicalId\":118417,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文考虑了Melvin Fitting在双边格子上的“裁剪”操作的概念。证明了双格上的缩减运算逻辑等价于Harry Deutsch的四值sde,证明了sde与双格理论的紧密联系,就像Dunn-Belnap逻辑Efde一样。本文的结论是,Carlos Damásio和Luís Pereira的“非”操作是fit意义上的削减,而Damásio-Pereira削减操作在双边格子NINE上的逻辑相当于Richard Angell的AC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cut-Down Operations on Bilattices
In this paper, Melvin Fitting's notion of a "cut-down" operation on a bilattice is considered. It is shown that the logic of cut-down operations on bilattices is equivalent to Harry Deutsch's four-valued Sfde, demonstrating that Sfde is as intimately connected to the theory of bilattices as is the Dunn-Belnap logic Efde. The paper concludes by observing that the "not ¬" operation of Carlos Damásio and Luís Pereira serves as a cut-down in Fitting's sense and that the logic of Damásio-Pereira cut-down operations on the bilattice NINE is equivalent to Richard Angell's AC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信