{"title":"双向长短期记忆网络检测心音杂音及临床预后","authors":"S. Monteiro, A. Fred, H. Silva","doi":"10.22489/CinC.2022.153","DOIUrl":null,"url":null,"abstract":"Heart sound recordings are a key non-invasive tool to detect both congenital and acquired heart conditions. As part of the George B. Moody PhysioNet Challenge 2022, we present an approach based on Bidirectional Long Short-Term Memory (BiLSTM) neural networks for the detection of murmurs and prediction of clinical outcome from Phonocardiograms (PCGs). We used the homomorphic, Hilbert, power spectral density, and wavelet envelopes as signal features, from which we extracted fixed-length segments of 4 seconds to train the network. Using the official challenge scoring metrics, our team SmartBeatIT achieved a murmur weighted accuracy score of 0.757 on the hidden test set (ranked 6th out of 40 teams), and an outcome cost score of 13815 (ranked 25th out of 39 teams). With 5-fold cross-validation on the training set, in the murmur detection task we obtained sensitivities of 0.827 and 0.312 for the Present and Unknown classes and a specificity of 0.801; and a sensitivity of 0.676 and a specificity of 0.544 in the outcome prediction task.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detection of Heart Sound Murmurs and Clinical Outcome with Bidirectional Long Short-Term Memory Networks\",\"authors\":\"S. Monteiro, A. Fred, H. Silva\",\"doi\":\"10.22489/CinC.2022.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart sound recordings are a key non-invasive tool to detect both congenital and acquired heart conditions. As part of the George B. Moody PhysioNet Challenge 2022, we present an approach based on Bidirectional Long Short-Term Memory (BiLSTM) neural networks for the detection of murmurs and prediction of clinical outcome from Phonocardiograms (PCGs). We used the homomorphic, Hilbert, power spectral density, and wavelet envelopes as signal features, from which we extracted fixed-length segments of 4 seconds to train the network. Using the official challenge scoring metrics, our team SmartBeatIT achieved a murmur weighted accuracy score of 0.757 on the hidden test set (ranked 6th out of 40 teams), and an outcome cost score of 13815 (ranked 25th out of 39 teams). With 5-fold cross-validation on the training set, in the murmur detection task we obtained sensitivities of 0.827 and 0.312 for the Present and Unknown classes and a specificity of 0.801; and a sensitivity of 0.676 and a specificity of 0.544 in the outcome prediction task.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
心音记录是检测先天性和后天性心脏病的一种关键的非侵入性工具。作为George B. Moody PhysioNet Challenge 2022的一部分,我们提出了一种基于双向长短期记忆(BiLSTM)神经网络的方法,用于检测杂音并预测心音图(pcg)的临床结果。我们使用同态、希尔伯特、功率谱密度和小波包络作为信号特征,从中提取固定长度的4秒片段来训练网络。使用官方挑战得分指标,我们的团队SmartBeatIT在隐藏测试集上获得了0.757的低加权准确率得分(在40支团队中排名第6),以及13815的结果成本得分(在39支团队中排名第25)。通过对训练集进行5倍交叉验证,在杂音检测任务中,我们获得了Present和Unknown类别的灵敏度分别为0.827和0.312,特异性为0.801;结果预测任务的敏感性为0.676,特异性为0.544。
Detection of Heart Sound Murmurs and Clinical Outcome with Bidirectional Long Short-Term Memory Networks
Heart sound recordings are a key non-invasive tool to detect both congenital and acquired heart conditions. As part of the George B. Moody PhysioNet Challenge 2022, we present an approach based on Bidirectional Long Short-Term Memory (BiLSTM) neural networks for the detection of murmurs and prediction of clinical outcome from Phonocardiograms (PCGs). We used the homomorphic, Hilbert, power spectral density, and wavelet envelopes as signal features, from which we extracted fixed-length segments of 4 seconds to train the network. Using the official challenge scoring metrics, our team SmartBeatIT achieved a murmur weighted accuracy score of 0.757 on the hidden test set (ranked 6th out of 40 teams), and an outcome cost score of 13815 (ranked 25th out of 39 teams). With 5-fold cross-validation on the training set, in the murmur detection task we obtained sensitivities of 0.827 and 0.312 for the Present and Unknown classes and a specificity of 0.801; and a sensitivity of 0.676 and a specificity of 0.544 in the outcome prediction task.