通过对抗性去偏见分离仇恨言论和攻击性语言类

Shuzhou Yuan, Antonis Maronikolakis, Hinrich Schütze
{"title":"通过对抗性去偏见分离仇恨言论和攻击性语言类","authors":"Shuzhou Yuan, Antonis Maronikolakis, Hinrich Schütze","doi":"10.18653/v1/2022.woah-1.1","DOIUrl":null,"url":null,"abstract":"Research to tackle hate speech plaguing online media has made strides in providing solutions, analyzing bias and curating data. A challenging problem is ambiguity between hate speech and offensive language, causing low performance both overall and specifically for the hate speech class. It can be argued that misclassifying actual hate speech content as merely offensive can lead to further harm against targeted groups. In our work, we mitigate this potentially harmful phenomenon by proposing an adversarial debiasing method to separate the two classes. We show that our method works for English, Arabic German and Hindi, plus in a multilingual setting, improving performance over baselines.","PeriodicalId":440731,"journal":{"name":"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Separating Hate Speech and Offensive Language Classes via Adversarial Debiasing\",\"authors\":\"Shuzhou Yuan, Antonis Maronikolakis, Hinrich Schütze\",\"doi\":\"10.18653/v1/2022.woah-1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research to tackle hate speech plaguing online media has made strides in providing solutions, analyzing bias and curating data. A challenging problem is ambiguity between hate speech and offensive language, causing low performance both overall and specifically for the hate speech class. It can be argued that misclassifying actual hate speech content as merely offensive can lead to further harm against targeted groups. In our work, we mitigate this potentially harmful phenomenon by proposing an adversarial debiasing method to separate the two classes. We show that our method works for English, Arabic German and Hindi, plus in a multilingual setting, improving performance over baselines.\",\"PeriodicalId\":440731,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.woah-1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.woah-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对困扰网络媒体的仇恨言论的研究在提供解决方案、分析偏见和管理数据方面取得了长足进展。一个具有挑战性的问题是仇恨言论和攻击性语言之间的歧义,这导致仇恨言论类的总体表现和具体表现都很低。可以认为,将实际的仇恨言论内容错误地归类为仅仅是攻击性的,可能会导致对目标群体的进一步伤害。在我们的工作中,我们通过提出一种对抗性的去偏见方法来分离这两个类别,从而减轻了这种潜在的有害现象。我们表明,我们的方法适用于英语、阿拉伯语、德语和印地语,以及在多语言环境中,提高了基准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating Hate Speech and Offensive Language Classes via Adversarial Debiasing
Research to tackle hate speech plaguing online media has made strides in providing solutions, analyzing bias and curating data. A challenging problem is ambiguity between hate speech and offensive language, causing low performance both overall and specifically for the hate speech class. It can be argued that misclassifying actual hate speech content as merely offensive can lead to further harm against targeted groups. In our work, we mitigate this potentially harmful phenomenon by proposing an adversarial debiasing method to separate the two classes. We show that our method works for English, Arabic German and Hindi, plus in a multilingual setting, improving performance over baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信