Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm
{"title":"分析扩展属性图与Apache Flink","authors":"Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm","doi":"10.1145/2980523.2980527","DOIUrl":null,"url":null,"abstract":"Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.","PeriodicalId":246127,"journal":{"name":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Analyzing extended property graphs with Apache Flink\",\"authors\":\"Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm\",\"doi\":\"10.1145/2980523.2980527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.\",\"PeriodicalId\":246127,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2980523.2980527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2980523.2980527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing extended property graphs with Apache Flink
Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.