使用临界等值探索标量场

G. Weber, G. Scheuermann, H. Hagen, B. Hamann
{"title":"使用临界等值探索标量场","authors":"G. Weber, G. Scheuermann, H. Hagen, B. Hamann","doi":"10.1109/VISUAL.2002.1183772","DOIUrl":null,"url":null,"abstract":"Isosurfaces are commonly used to visualize scalar fields. Critical isovalues indicate isosurface topology changes: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Therefore, they highlight interesting isosurface behavior and are helpful in exploration of large trivariate data sets. We present a method that detects critical isovalues in a scalar field defined by piecewise trilinear interpolation over a rectilinear grid and describe how to use them when examining volume data. We further review varieties of the marching cubes (MC) algorithm, with the intention of preserving topology of the trilinear interpolant when extracting an isosurface. We combine and extend two approaches in such a way that it is possible to extract meaningful isosurfaces even when a critical value is chosen as the isovalue.","PeriodicalId":196064,"journal":{"name":"IEEE Visualization, 2002. VIS 2002.","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Exploring scalar fields using critical isovalues\",\"authors\":\"G. Weber, G. Scheuermann, H. Hagen, B. Hamann\",\"doi\":\"10.1109/VISUAL.2002.1183772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isosurfaces are commonly used to visualize scalar fields. Critical isovalues indicate isosurface topology changes: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Therefore, they highlight interesting isosurface behavior and are helpful in exploration of large trivariate data sets. We present a method that detects critical isovalues in a scalar field defined by piecewise trilinear interpolation over a rectilinear grid and describe how to use them when examining volume data. We further review varieties of the marching cubes (MC) algorithm, with the intention of preserving topology of the trilinear interpolant when extracting an isosurface. We combine and extend two approaches in such a way that it is possible to extract meaningful isosurfaces even when a critical value is chosen as the isovalue.\",\"PeriodicalId\":196064,\"journal\":{\"name\":\"IEEE Visualization, 2002. VIS 2002.\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2002. VIS 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2002.1183772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2002. VIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2002.1183772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

等值面通常用于可视化标量场。临界等值表示等面拓扑结构的变化:新的表面组件的产生,表面组件的合并或表面组件中孔的形成。因此,它们突出了有趣的等值面行为,有助于探索大型三元数据集。我们提出了一种方法,可以检测由分段三线性插值在直线网格上定义的标量场中的临界等值,并描述了如何在检查体积数据时使用它们。我们进一步回顾了各种行军立方体(MC)算法,目的是在提取等值面时保持三线性插值的拓扑结构。我们结合并扩展了两种方法,即使选择了一个临界值作为等值面,也可以提取有意义的等值面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring scalar fields using critical isovalues
Isosurfaces are commonly used to visualize scalar fields. Critical isovalues indicate isosurface topology changes: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Therefore, they highlight interesting isosurface behavior and are helpful in exploration of large trivariate data sets. We present a method that detects critical isovalues in a scalar field defined by piecewise trilinear interpolation over a rectilinear grid and describe how to use them when examining volume data. We further review varieties of the marching cubes (MC) algorithm, with the intention of preserving topology of the trilinear interpolant when extracting an isosurface. We combine and extend two approaches in such a way that it is possible to extract meaningful isosurfaces even when a critical value is chosen as the isovalue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信