L. Huang, Zhiying Sun, Xinguang Yang, A. Miranville
{"title":"具有圆柱对称的可压缩粘性微极流体经典解的全局行为","authors":"L. Huang, Zhiying Sun, Xinguang Yang, A. Miranville","doi":"10.3934/cpaa.2022033","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of <inline-formula><tex-math id=\"M1\">\\begin{document}$ R^3 $\\end{document}</tex-math></inline-formula> bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity <inline-formula><tex-math id=\"M2\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> in this model brings benefit that is the damping term -<inline-formula><tex-math id=\"M3\">\\begin{document}$ uw $\\end{document}</tex-math></inline-formula> can provide extra regularity of <inline-formula><tex-math id=\"M4\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula>. At the same time, the term <inline-formula><tex-math id=\"M5\">\\begin{document}$ uw^2 $\\end{document}</tex-math></inline-formula> is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in <inline-formula><tex-math id=\"M6\">\\begin{document}$ H^4 $\\end{document}</tex-math></inline-formula> also are proved.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry\",\"authors\":\"L. Huang, Zhiying Sun, Xinguang Yang, A. Miranville\",\"doi\":\"10.3934/cpaa.2022033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ R^3 $\\\\end{document}</tex-math></inline-formula> bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ w $\\\\end{document}</tex-math></inline-formula> in this model brings benefit that is the damping term -<inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ uw $\\\\end{document}</tex-math></inline-formula> can provide extra regularity of <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ w $\\\\end{document}</tex-math></inline-formula>. At the same time, the term <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ uw^2 $\\\\end{document}</tex-math></inline-formula> is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ H^4 $\\\\end{document}</tex-math></inline-formula> also are proved.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of \begin{document}$ R^3 $\end{document} bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity \begin{document}$ w $\end{document} in this model brings benefit that is the damping term -\begin{document}$ uw $\end{document} can provide extra regularity of \begin{document}$ w $\end{document}. At the same time, the term \begin{document}$ uw^2 $\end{document} is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in \begin{document}$ H^4 $\end{document} also are proved.
Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry
This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of \begin{document}$ R^3 $\end{document} bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity \begin{document}$ w $\end{document} in this model brings benefit that is the damping term -\begin{document}$ uw $\end{document} can provide extra regularity of \begin{document}$ w $\end{document}. At the same time, the term \begin{document}$ uw^2 $\end{document} is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in \begin{document}$ H^4 $\end{document} also are proved.