各种特征提取技术的性能评价,特别是手势识别

Anjali R. Patil, S. Subbaraman
{"title":"各种特征提取技术的性能评价,特别是手势识别","authors":"Anjali R. Patil, S. Subbaraman","doi":"10.1109/ICSIP.2014.43","DOIUrl":null,"url":null,"abstract":"Extraction of significant and dominant features from possibly large set of database is a crucial task. The Performance of feature extraction technique depends on the dimensions of generated features and reconstruction. In this paper we provide a comparative study of different feature extraction techniques like Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Principle Component Analysis (PCA), Local Binary Pattern (LBP), DCT+Gabor, DWT+ Gabor etc. and each technique is compared with each other based on Sebastian Marcel static hand postures database[24] consisting of six postures. We have used Neural Network to compare the performances of feature extraction techniques based on Recognition Accuracy (RA), False Acceptance Rate (FAR), False Recognition Rate (FRR) and also dimensions. We found that fusion of LBP and Gabor, DWT and Gabor provides good results.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation of Various Feature Extraction Techniques with Special Reference to Hand Gesture Recognition\",\"authors\":\"Anjali R. Patil, S. Subbaraman\",\"doi\":\"10.1109/ICSIP.2014.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of significant and dominant features from possibly large set of database is a crucial task. The Performance of feature extraction technique depends on the dimensions of generated features and reconstruction. In this paper we provide a comparative study of different feature extraction techniques like Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Principle Component Analysis (PCA), Local Binary Pattern (LBP), DCT+Gabor, DWT+ Gabor etc. and each technique is compared with each other based on Sebastian Marcel static hand postures database[24] consisting of six postures. We have used Neural Network to compare the performances of feature extraction techniques based on Recognition Accuracy (RA), False Acceptance Rate (FAR), False Recognition Rate (FRR) and also dimensions. We found that fusion of LBP and Gabor, DWT and Gabor provides good results.\",\"PeriodicalId\":111591,\"journal\":{\"name\":\"2014 Fifth International Conference on Signal and Image Processing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fifth International Conference on Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIP.2014.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从可能庞大的数据库中提取重要的和主要的特征是一项关键的任务。特征提取技术的性能取决于生成特征的维度和重构。在本文中,我们对离散余弦变换(DCT)、离散小波变换(DWT)、主成分分析(PCA)、局部二值模式(LBP)、DCT+Gabor、DWT+ Gabor等不同的特征提取技术进行了比较研究,并基于Sebastian Marcel静态手势数据库[24]对六种手势进行了对比。我们使用神经网络比较了基于识别精度(RA)、错误接受率(FAR)、错误识别率(FRR)和维度的特征提取技术的性能。我们发现LBP和Gabor、DWT和Gabor的融合效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Various Feature Extraction Techniques with Special Reference to Hand Gesture Recognition
Extraction of significant and dominant features from possibly large set of database is a crucial task. The Performance of feature extraction technique depends on the dimensions of generated features and reconstruction. In this paper we provide a comparative study of different feature extraction techniques like Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Principle Component Analysis (PCA), Local Binary Pattern (LBP), DCT+Gabor, DWT+ Gabor etc. and each technique is compared with each other based on Sebastian Marcel static hand postures database[24] consisting of six postures. We have used Neural Network to compare the performances of feature extraction techniques based on Recognition Accuracy (RA), False Acceptance Rate (FAR), False Recognition Rate (FRR) and also dimensions. We found that fusion of LBP and Gabor, DWT and Gabor provides good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信