{"title":"求解线性系统的更快量子启发算法","authors":"Changpeng Shao, A. Montanaro","doi":"10.1145/3520141","DOIUrl":null,"url":null,"abstract":"We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \\( A{\\bf x}= {\\bf b} \\) , we show that there is a classical algorithm that outputs a data structure for \\( {\\bf x} \\) allowing sampling and querying to the entries, where \\( {\\bf x} \\) is such that \\( \\Vert {\\bf x}- A^{+}{\\bf b}\\Vert \\le \\epsilon \\Vert A^{+}{\\bf b}\\Vert \\) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^2/\\epsilon ^2) \\) , where \\( \\kappa _F = \\Vert A\\Vert _F\\Vert A^{+}\\Vert \\) and \\( \\kappa = \\Vert A\\Vert \\Vert A^{+}\\Vert \\) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^6/\\epsilon ^4) \\) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \\( {\\bf x} \\) in time \\( \\widetilde{O}(\\kappa _F^2) \\) , while the best quantum algorithm known returns \\( | {\\bf x} \\rangle \\) in time \\( \\widetilde{O}(\\kappa _F) \\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Faster Quantum-inspired Algorithms for Solving Linear Systems\",\"authors\":\"Changpeng Shao, A. Montanaro\",\"doi\":\"10.1145/3520141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \\\\( A{\\\\bf x}= {\\\\bf b} \\\\) , we show that there is a classical algorithm that outputs a data structure for \\\\( {\\\\bf x} \\\\) allowing sampling and querying to the entries, where \\\\( {\\\\bf x} \\\\) is such that \\\\( \\\\Vert {\\\\bf x}- A^{+}{\\\\bf b}\\\\Vert \\\\le \\\\epsilon \\\\Vert A^{+}{\\\\bf b}\\\\Vert \\\\) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \\\\( \\\\widetilde{O}(\\\\kappa _F^6 \\\\kappa ^2/\\\\epsilon ^2) \\\\) , where \\\\( \\\\kappa _F = \\\\Vert A\\\\Vert _F\\\\Vert A^{+}\\\\Vert \\\\) and \\\\( \\\\kappa = \\\\Vert A\\\\Vert \\\\Vert A^{+}\\\\Vert \\\\) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \\\\( \\\\widetilde{O}(\\\\kappa _F^6 \\\\kappa ^6/\\\\epsilon ^4) \\\\) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \\\\( {\\\\bf x} \\\\) in time \\\\( \\\\widetilde{O}(\\\\kappa _F^2) \\\\) , while the best quantum algorithm known returns \\\\( | {\\\\bf x} \\\\rangle \\\\) in time \\\\( \\\\widetilde{O}(\\\\kappa _F) \\\\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3520141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Faster Quantum-inspired Algorithms for Solving Linear Systems
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \( A{\bf x}= {\bf b} \) , we show that there is a classical algorithm that outputs a data structure for \( {\bf x} \) allowing sampling and querying to the entries, where \( {\bf x} \) is such that \( \Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert \) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \( \widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2) \) , where \( \kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert \) and \( \kappa = \Vert A\Vert \Vert A^{+}\Vert \) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \( \widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4) \) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \( {\bf x} \) in time \( \widetilde{O}(\kappa _F^2) \) , while the best quantum algorithm known returns \( | {\bf x} \rangle \) in time \( \widetilde{O}(\kappa _F) \) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.