N. A. Dung, Pham Phu Hieu, H. Chiu, Y. Hsieh, Jing-Yuan Lin
{"title":"基于DSP的ZVS双向降压+升压变换器数字控制策略","authors":"N. A. Dung, Pham Phu Hieu, H. Chiu, Y. Hsieh, Jing-Yuan Lin","doi":"10.1109/IGBSG.2018.8393570","DOIUrl":null,"url":null,"abstract":"The non-isolated bidirectional DC-DC converters are the most popular topology for low or medium power of the hybrid electric vehicle (HEV) or fuel cell vehicle (FCV) applications. These kinds of converters have the advantages of simple circuit topology, bidirectional flows, zero-voltage-switching (ZVS), high efficiency, and high power density. The turned-on ZVS for all MOSFETs is achieved by the negative offset of the inductor current at the beginning and the end of each switching period. To do this, the converter requires a complex switching strategy which is preferred to be implemented by the digital signal processing (DSP). This paper presents the digital implementation of the switching pattern to ensure the ZVS condition for such converter. A 5kW prototype is performed to verify the capability of such control scheme.","PeriodicalId":356367,"journal":{"name":"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A DSP based digital control strategy for ZVS bidirectional Buck+Boost converter\",\"authors\":\"N. A. Dung, Pham Phu Hieu, H. Chiu, Y. Hsieh, Jing-Yuan Lin\",\"doi\":\"10.1109/IGBSG.2018.8393570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-isolated bidirectional DC-DC converters are the most popular topology for low or medium power of the hybrid electric vehicle (HEV) or fuel cell vehicle (FCV) applications. These kinds of converters have the advantages of simple circuit topology, bidirectional flows, zero-voltage-switching (ZVS), high efficiency, and high power density. The turned-on ZVS for all MOSFETs is achieved by the negative offset of the inductor current at the beginning and the end of each switching period. To do this, the converter requires a complex switching strategy which is preferred to be implemented by the digital signal processing (DSP). This paper presents the digital implementation of the switching pattern to ensure the ZVS condition for such converter. A 5kW prototype is performed to verify the capability of such control scheme.\",\"PeriodicalId\":356367,\"journal\":{\"name\":\"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGBSG.2018.8393570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGBSG.2018.8393570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A DSP based digital control strategy for ZVS bidirectional Buck+Boost converter
The non-isolated bidirectional DC-DC converters are the most popular topology for low or medium power of the hybrid electric vehicle (HEV) or fuel cell vehicle (FCV) applications. These kinds of converters have the advantages of simple circuit topology, bidirectional flows, zero-voltage-switching (ZVS), high efficiency, and high power density. The turned-on ZVS for all MOSFETs is achieved by the negative offset of the inductor current at the beginning and the end of each switching period. To do this, the converter requires a complex switching strategy which is preferred to be implemented by the digital signal processing (DSP). This paper presents the digital implementation of the switching pattern to ensure the ZVS condition for such converter. A 5kW prototype is performed to verify the capability of such control scheme.