在线讨论中论证相关性的表征和确定:一般方法

Zhen Guo, Munindar P. Singh
{"title":"在线讨论中论证相关性的表征和确定:一般方法","authors":"Zhen Guo, Munindar P. Singh","doi":"10.1609/icwsm.v17i1.22146","DOIUrl":null,"url":null,"abstract":"Understanding an online argumentative discussion is essential for understanding users' opinions on a topic and their underlying reasoning. A key challenge in determining completeness and persuasiveness of argumentative discussions is to assess how arguments under a topic are connected in a logical and coherent manner. Online argumentative discussions, in contrast to essays or face-to-face communication, challenge techniques for judging argument relevance because online discussions involve multiple participants and often exhibit incoherence in reasoning and inconsistencies in writing style. \n\nWe define relevance as the logical and topical connections between small texts representing argument fragments in online discussions. We provide a corpus comprising pairs of sentences, labeled with argumentative relevance between the sentences in each pair. We propose a computational approach relying on content reduction and a Siamese neural network architecture for modeling argumentative connections and determining argumentative relevance between texts. \n\nExperimental results indicate that our approach is effective in measuring relevance between arguments, and outperforms strong and well-adopted baselines.\nFurther analysis demonstrates the benefit of using our argumentative relevance encoding on a downstream task, predicting how impactful an online comment is to certain topic, comparing to encoding that does not consider logical connection.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representing and Determining Argumentative Relevance in Online Discussions: A General Approach\",\"authors\":\"Zhen Guo, Munindar P. Singh\",\"doi\":\"10.1609/icwsm.v17i1.22146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding an online argumentative discussion is essential for understanding users' opinions on a topic and their underlying reasoning. A key challenge in determining completeness and persuasiveness of argumentative discussions is to assess how arguments under a topic are connected in a logical and coherent manner. Online argumentative discussions, in contrast to essays or face-to-face communication, challenge techniques for judging argument relevance because online discussions involve multiple participants and often exhibit incoherence in reasoning and inconsistencies in writing style. \\n\\nWe define relevance as the logical and topical connections between small texts representing argument fragments in online discussions. We provide a corpus comprising pairs of sentences, labeled with argumentative relevance between the sentences in each pair. We propose a computational approach relying on content reduction and a Siamese neural network architecture for modeling argumentative connections and determining argumentative relevance between texts. \\n\\nExperimental results indicate that our approach is effective in measuring relevance between arguments, and outperforms strong and well-adopted baselines.\\nFurther analysis demonstrates the benefit of using our argumentative relevance encoding on a downstream task, predicting how impactful an online comment is to certain topic, comparing to encoding that does not consider logical connection.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

理解在线辩论讨论对于理解用户对某个主题的观点及其潜在推理至关重要。确定论证性讨论的完整性和说服力的一个关键挑战是评估一个主题下的论点如何以逻辑和连贯的方式联系起来。与论文或面对面交流相比,在线辩论对判断论点相关性的技术提出了挑战,因为在线讨论涉及多个参与者,并且经常表现出推理不连贯和写作风格不一致。我们将相关性定义为在线讨论中代表论点片段的小文本之间的逻辑和主题联系。我们提供了一个由句子对组成的语料库,每对句子之间都标有论证相关性。我们提出了一种基于内容约简和暹罗神经网络架构的计算方法,用于建模论证连接和确定文本之间的论证相关性。实验结果表明,我们的方法在衡量论点之间的相关性方面是有效的,并且优于强大且被广泛采用的基线。进一步的分析表明,与不考虑逻辑连接的编码相比,在下游任务中使用我们的论证性相关性编码可以预测在线评论对某个主题的影响程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing and Determining Argumentative Relevance in Online Discussions: A General Approach
Understanding an online argumentative discussion is essential for understanding users' opinions on a topic and their underlying reasoning. A key challenge in determining completeness and persuasiveness of argumentative discussions is to assess how arguments under a topic are connected in a logical and coherent manner. Online argumentative discussions, in contrast to essays or face-to-face communication, challenge techniques for judging argument relevance because online discussions involve multiple participants and often exhibit incoherence in reasoning and inconsistencies in writing style. We define relevance as the logical and topical connections between small texts representing argument fragments in online discussions. We provide a corpus comprising pairs of sentences, labeled with argumentative relevance between the sentences in each pair. We propose a computational approach relying on content reduction and a Siamese neural network architecture for modeling argumentative connections and determining argumentative relevance between texts. Experimental results indicate that our approach is effective in measuring relevance between arguments, and outperforms strong and well-adopted baselines. Further analysis demonstrates the benefit of using our argumentative relevance encoding on a downstream task, predicting how impactful an online comment is to certain topic, comparing to encoding that does not consider logical connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信