竞争性k-server算法

A. Fiat, Y. Rabani, Yiftach Ravid
{"title":"竞争性k-server算法","authors":"A. Fiat, Y. Rabani, Yiftach Ravid","doi":"10.1109/FSCS.1990.89566","DOIUrl":null,"url":null,"abstract":"Deterministic competitive k-server algorithms are given for all k and all metric spaces. This settles the k-server conjecture of M.S. Manasse et al. (1988) up to the competitive ratio. The best previous result for general metric spaces was a three-server randomized competitive algorithm and a nonconstructive proof that a deterministic three-server competitive algorithm exists. The competitive ratio the present authors can prove is exponential in the number of servers. Thus, the question of the minimal competitive ratio for arbitrary metric spaces is still open. The methods set forth here also give competitive algorithms for a natural generalization of the k-server problem, called the k-taxicab problem.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Competitive k-server algorithms\",\"authors\":\"A. Fiat, Y. Rabani, Yiftach Ravid\",\"doi\":\"10.1109/FSCS.1990.89566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic competitive k-server algorithms are given for all k and all metric spaces. This settles the k-server conjecture of M.S. Manasse et al. (1988) up to the competitive ratio. The best previous result for general metric spaces was a three-server randomized competitive algorithm and a nonconstructive proof that a deterministic three-server competitive algorithm exists. The competitive ratio the present authors can prove is exponential in the number of servers. Thus, the question of the minimal competitive ratio for arbitrary metric spaces is still open. The methods set forth here also give competitive algorithms for a natural generalization of the k-server problem, called the k-taxicab problem.<<ETX>>\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSCS.1990.89566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

摘要

给出了所有k和所有度量空间的确定性竞争k-server算法。这就解决了M.S. Manasse等人(1988)关于竞争比率的k-server猜想。一般度量空间的最佳结果是一个三服务器随机竞争算法和一个确定性三服务器竞争算法存在的非建设性证明。本文作者所证明的竞争比在服务器数量上呈指数增长。因此,任意度量空间的最小竞争比问题仍然是开放的。这里提出的方法也为k-服务器问题的自然推广提供了竞争算法,称为k-出租车问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive k-server algorithms
Deterministic competitive k-server algorithms are given for all k and all metric spaces. This settles the k-server conjecture of M.S. Manasse et al. (1988) up to the competitive ratio. The best previous result for general metric spaces was a three-server randomized competitive algorithm and a nonconstructive proof that a deterministic three-server competitive algorithm exists. The competitive ratio the present authors can prove is exponential in the number of servers. Thus, the question of the minimal competitive ratio for arbitrary metric spaces is still open. The methods set forth here also give competitive algorithms for a natural generalization of the k-server problem, called the k-taxicab problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信