应急后拥堵有效管理的动态热评级

D. Fang, J. Gunda, M. Zou, G. Harrison, S. Djokic, A. Vaccaro
{"title":"应急后拥堵有效管理的动态热评级","authors":"D. Fang, J. Gunda, M. Zou, G. Harrison, S. Djokic, A. Vaccaro","doi":"10.1109/PTC.2019.8810555","DOIUrl":null,"url":null,"abstract":"This paper presents a novel optimal power flow (OPF) based approach for post-contingency management of severe congestions, aimed at maximizing lead time available to the network operators before the next contingency occurs. The approach first computes the maximum allowed overloading times for the congested transmission lines and transformers, using their dynamic thermal models. Afterwards, the OPF analysis is performed to identify the maximum lead time available to the network operator for managing post-contingency constraints and for devising and implementing the most efficient corrective actions. The corresponding OPF problem is modelled as a mixed-integer nonlinear optimization problem and solved using mixed-discrete particle swarm optimization (MDPSO) approach. The approach is illustrated on a modified IEEE 14-bus network and obtained results demonstrate that presented approach can manage considered constraints within the available lead time.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Thermal Rating for Efficient Management of Post-Contingency Congestions\",\"authors\":\"D. Fang, J. Gunda, M. Zou, G. Harrison, S. Djokic, A. Vaccaro\",\"doi\":\"10.1109/PTC.2019.8810555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel optimal power flow (OPF) based approach for post-contingency management of severe congestions, aimed at maximizing lead time available to the network operators before the next contingency occurs. The approach first computes the maximum allowed overloading times for the congested transmission lines and transformers, using their dynamic thermal models. Afterwards, the OPF analysis is performed to identify the maximum lead time available to the network operator for managing post-contingency constraints and for devising and implementing the most efficient corrective actions. The corresponding OPF problem is modelled as a mixed-integer nonlinear optimization problem and solved using mixed-discrete particle swarm optimization (MDPSO) approach. The approach is illustrated on a modified IEEE 14-bus network and obtained results demonstrate that presented approach can manage considered constraints within the available lead time.\",\"PeriodicalId\":187144,\"journal\":{\"name\":\"2019 IEEE Milan PowerTech\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Milan PowerTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PTC.2019.8810555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的基于最优潮流(OPF)的严重拥塞事后管理方法,旨在最大限度地提高网络运营商在下一次事故发生前的可用提前时间。该方法首先利用动态热模型计算出拥堵输电线路和变压器的最大允许过载时间。之后,进行OPF分析,以确定网络运营商管理事故后约束的最大交货时间,并设计和实施最有效的纠正措施。将相应的OPF问题建模为混合整数非线性优化问题,并采用混合离散粒子群优化(MDPSO)方法求解。该方法在改进的IEEE 14总线网络上进行了演示,结果表明该方法可以在可用的提前期内管理所考虑的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Thermal Rating for Efficient Management of Post-Contingency Congestions
This paper presents a novel optimal power flow (OPF) based approach for post-contingency management of severe congestions, aimed at maximizing lead time available to the network operators before the next contingency occurs. The approach first computes the maximum allowed overloading times for the congested transmission lines and transformers, using their dynamic thermal models. Afterwards, the OPF analysis is performed to identify the maximum lead time available to the network operator for managing post-contingency constraints and for devising and implementing the most efficient corrective actions. The corresponding OPF problem is modelled as a mixed-integer nonlinear optimization problem and solved using mixed-discrete particle swarm optimization (MDPSO) approach. The approach is illustrated on a modified IEEE 14-bus network and obtained results demonstrate that presented approach can manage considered constraints within the available lead time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信