提出了一种优化概念密度上下文的剪枝方法,改进了词义消歧

A. Golkar, S. Jafari, M. Golkar, Seyed Mohammad Sadegh Dashti, S. M. Fakhrahmad
{"title":"提出了一种优化概念密度上下文的剪枝方法,改进了词义消歧","authors":"A. Golkar, S. Jafari, M. Golkar, Seyed Mohammad Sadegh Dashti, S. M. Fakhrahmad","doi":"10.1109/AISP.2015.7123502","DOIUrl":null,"url":null,"abstract":"In this paper, the role of nouns in reducing the conceptual density of contexts has been examined. A new method is proposed to identify and prune nouns with negative impact on conceptual density of contexts. In the proposed method, a fitness function is offered; a fitness degree is assigned to unambiguous nouns sense within the context. Using the mean fitness degree of unambiguous nouns' sense, a threshold is produced for that context. This threshold is then used as a measure to prune the sense of nouns with lower fitness degree that reduces the conceptual density of the context. Finally, by implementing this method on the contexts produced by conceptual density method, all contexts will be optimized significantly; this significantly increases the accuracy of disambiguation.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improve word sense disambiguation by proposing a pruning method for optimizing conceptual density's contexts\",\"authors\":\"A. Golkar, S. Jafari, M. Golkar, Seyed Mohammad Sadegh Dashti, S. M. Fakhrahmad\",\"doi\":\"10.1109/AISP.2015.7123502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the role of nouns in reducing the conceptual density of contexts has been examined. A new method is proposed to identify and prune nouns with negative impact on conceptual density of contexts. In the proposed method, a fitness function is offered; a fitness degree is assigned to unambiguous nouns sense within the context. Using the mean fitness degree of unambiguous nouns' sense, a threshold is produced for that context. This threshold is then used as a measure to prune the sense of nouns with lower fitness degree that reduces the conceptual density of the context. Finally, by implementing this method on the contexts produced by conceptual density method, all contexts will be optimized significantly; this significantly increases the accuracy of disambiguation.\",\"PeriodicalId\":405857,\"journal\":{\"name\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2015.7123502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考察了名词在降低语境概念密度中的作用。提出了一种新的方法来识别和修剪对语境概念密度有负面影响的名词。在该方法中,给出了适应度函数;明确的名词在语境中的意义具有一定的适合度。利用无二义名词意义的平均适应度,为该语境产生阈值。然后使用该阈值作为一种度量来修剪适应度较低的名词的意义,从而降低上下文的概念密度。最后,通过将该方法应用于概念密度法生成的上下文,所有上下文都将得到显著优化;这大大提高了消歧义的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improve word sense disambiguation by proposing a pruning method for optimizing conceptual density's contexts
In this paper, the role of nouns in reducing the conceptual density of contexts has been examined. A new method is proposed to identify and prune nouns with negative impact on conceptual density of contexts. In the proposed method, a fitness function is offered; a fitness degree is assigned to unambiguous nouns sense within the context. Using the mean fitness degree of unambiguous nouns' sense, a threshold is produced for that context. This threshold is then used as a measure to prune the sense of nouns with lower fitness degree that reduces the conceptual density of the context. Finally, by implementing this method on the contexts produced by conceptual density method, all contexts will be optimized significantly; this significantly increases the accuracy of disambiguation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信