用于密集预测的高效不变卷积神经网络

Hongyang Gao, Shuiwang Ji
{"title":"用于密集预测的高效不变卷积神经网络","authors":"Hongyang Gao, Shuiwang Ji","doi":"10.1109/ICDM.2017.107","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods based on kernel rotation and flip to enable rotation and flip invariance in convolutional neural networks. The kernel rotation can be achieved on kernels of 3 × 3, while kernel flip can be applied on kernels of any size. By rotating in eight or four angles, the convolutional layers could produce the corresponding number of feature maps based on eight or four different kernels. By using flip, the convolution layer can produce three feature maps. By combining produced feature maps using maxout, the resource requirement could be significantly reduced while still retain the invariance properties. Experimental results demonstrate that the proposed methods can achieve various invariance at reasonable resource requirements in terms of both memory and time.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient and Invariant Convolutional Neural Networks for Dense Prediction\",\"authors\":\"Hongyang Gao, Shuiwang Ji\",\"doi\":\"10.1109/ICDM.2017.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods based on kernel rotation and flip to enable rotation and flip invariance in convolutional neural networks. The kernel rotation can be achieved on kernels of 3 × 3, while kernel flip can be applied on kernels of any size. By rotating in eight or four angles, the convolutional layers could produce the corresponding number of feature maps based on eight or four different kernels. By using flip, the convolution layer can produce three feature maps. By combining produced feature maps using maxout, the resource requirement could be significantly reduced while still retain the invariance properties. Experimental results demonstrate that the proposed methods can achieve various invariance at reasonable resource requirements in terms of both memory and time.\",\"PeriodicalId\":254086,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2017.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

卷积神经网络在从原始输入数据(如图像)中提取特征方面取得了巨大成功。虽然卷积神经网络对输入的平移是不变的,但它们对其他变换(包括旋转和翻转)不是不变的。最近,人们尝试在图像识别应用中加入更多的不变性,但它们不适用于密集的预测任务,如图像分割。在本文中,我们提出了一组基于核旋转和翻转的方法来实现卷积神经网络的旋转和翻转不变性。内核旋转可以在3 × 3的内核上实现,而内核翻转可以应用于任何大小的内核。通过旋转8个或4个角度,卷积层可以基于8个或4个不同的核生成相应数量的特征映射。通过使用flip,卷积层可以生成三个特征映射。通过使用maxout组合生成的特征映射,可以在保留不变性的同时显著减少资源需求。实验结果表明,在合理的内存和时间资源要求下,该方法可以实现不同的不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Invariant Convolutional Neural Networks for Dense Prediction
Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods based on kernel rotation and flip to enable rotation and flip invariance in convolutional neural networks. The kernel rotation can be achieved on kernels of 3 × 3, while kernel flip can be applied on kernels of any size. By rotating in eight or four angles, the convolutional layers could produce the corresponding number of feature maps based on eight or four different kernels. By using flip, the convolution layer can produce three feature maps. By combining produced feature maps using maxout, the resource requirement could be significantly reduced while still retain the invariance properties. Experimental results demonstrate that the proposed methods can achieve various invariance at reasonable resource requirements in terms of both memory and time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信