可视化数据中的对象、关系和上下文

Hanwang Zhang, Qianru Sun
{"title":"可视化数据中的对象、关系和上下文","authors":"Hanwang Zhang, Qianru Sun","doi":"10.1145/3206025.3210496","DOIUrl":null,"url":null,"abstract":"For decades, we are interested in detecting objects and classifying them into a fixed vocabulary of lexicon. With the maturity of these low-level vision solutions, we are hunger for a higher-level representation of the visual data, so as to extract visual knowledge rather than merely bags of visual entities, allowing machines to reason about human-level decision-making and even manipulate the visual data at the pixel-level. In this tutorial, we will introduce a various of machine learning techniques for modeling visual relationships (e.g., subject-predicate-object triplet detection) and contextual generative models (e.g., generating photo-realistic images using conditional generative adversarial networks). In particular, we plan to start from fundamental theories on object detection, relationship detection, generative adversarial networks, to more advanced topics on referring expression visual grounding, pose guided person image generation, and context based image inpainting.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Objects, Relationships, and Context in Visual Data\",\"authors\":\"Hanwang Zhang, Qianru Sun\",\"doi\":\"10.1145/3206025.3210496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For decades, we are interested in detecting objects and classifying them into a fixed vocabulary of lexicon. With the maturity of these low-level vision solutions, we are hunger for a higher-level representation of the visual data, so as to extract visual knowledge rather than merely bags of visual entities, allowing machines to reason about human-level decision-making and even manipulate the visual data at the pixel-level. In this tutorial, we will introduce a various of machine learning techniques for modeling visual relationships (e.g., subject-predicate-object triplet detection) and contextual generative models (e.g., generating photo-realistic images using conditional generative adversarial networks). In particular, we plan to start from fundamental theories on object detection, relationship detection, generative adversarial networks, to more advanced topics on referring expression visual grounding, pose guided person image generation, and context based image inpainting.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3210496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3210496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,我们感兴趣的是检测物体并将它们分类到一个固定的词汇表中。随着这些低级视觉解决方案的成熟,我们渴望一种更高层次的视觉数据表示,以便提取视觉知识,而不仅仅是一袋视觉实体,使机器能够对人类级别的决策进行推理,甚至在像素级上操纵视觉数据。在本教程中,我们将介绍各种机器学习技术,用于建模视觉关系(例如,主语-谓语-宾语三元组检测)和上下文生成模型(例如,使用条件生成对抗网络生成逼真的图像)。特别是,我们计划从对象检测,关系检测,生成对抗网络的基础理论开始,到更高级的主题,如参考表达视觉基础,姿势引导的人物图像生成和基于上下文的图像绘制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objects, Relationships, and Context in Visual Data
For decades, we are interested in detecting objects and classifying them into a fixed vocabulary of lexicon. With the maturity of these low-level vision solutions, we are hunger for a higher-level representation of the visual data, so as to extract visual knowledge rather than merely bags of visual entities, allowing machines to reason about human-level decision-making and even manipulate the visual data at the pixel-level. In this tutorial, we will introduce a various of machine learning techniques for modeling visual relationships (e.g., subject-predicate-object triplet detection) and contextual generative models (e.g., generating photo-realistic images using conditional generative adversarial networks). In particular, we plan to start from fundamental theories on object detection, relationship detection, generative adversarial networks, to more advanced topics on referring expression visual grounding, pose guided person image generation, and context based image inpainting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信