线性和非线性几何对象匹配与隐式表示

A. Leow, M. Chiang, H. Protas, P. Thompson, L. Vese, Henry S. C. Huang
{"title":"线性和非线性几何对象匹配与隐式表示","authors":"A. Leow, M. Chiang, H. Protas, P. Thompson, L. Vese, Henry S. C. Huang","doi":"10.1109/ICPR.2004.1334627","DOIUrl":null,"url":null,"abstract":"This paper deals with the matching of geometric objects including points, curves, surfaces, and subvolumes using implicit object representations in both linear and non-linear settings. This framework can be applied to feature-based non-linear image warping in biomedical imaging with the deformation constrained to be one-to-one, onto, and diffeomorphic. Moreover, a theoretical connection is established between the well known Hausdorff metric and the framework proposed in this paper. A general strategy for matching geometric objects in both 2D and 3D is discussed. The corresponding Euler-Lagrange equations are presented and gradient descent method is employed to solve the time dependent partial differential equations.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Linear and non-linear geometric object matching with implicit representation\",\"authors\":\"A. Leow, M. Chiang, H. Protas, P. Thompson, L. Vese, Henry S. C. Huang\",\"doi\":\"10.1109/ICPR.2004.1334627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the matching of geometric objects including points, curves, surfaces, and subvolumes using implicit object representations in both linear and non-linear settings. This framework can be applied to feature-based non-linear image warping in biomedical imaging with the deformation constrained to be one-to-one, onto, and diffeomorphic. Moreover, a theoretical connection is established between the well known Hausdorff metric and the framework proposed in this paper. A general strategy for matching geometric objects in both 2D and 3D is discussed. The corresponding Euler-Lagrange equations are presented and gradient descent method is employed to solve the time dependent partial differential equations.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文处理几何对象的匹配,包括点,曲线,曲面,和子体积使用隐式对象表示在线性和非线性设置。该框架可以应用于生物医学成像中基于特征的非线性图像变形,变形约束为一对一、映上和微分同构。此外,本文还建立了著名的豪斯多夫度量与本文提出的框架之间的理论联系。讨论了二维和三维几何对象匹配的一般策略。提出了相应的欧拉-拉格朗日方程,并采用梯度下降法求解时变偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and non-linear geometric object matching with implicit representation
This paper deals with the matching of geometric objects including points, curves, surfaces, and subvolumes using implicit object representations in both linear and non-linear settings. This framework can be applied to feature-based non-linear image warping in biomedical imaging with the deformation constrained to be one-to-one, onto, and diffeomorphic. Moreover, a theoretical connection is established between the well known Hausdorff metric and the framework proposed in this paper. A general strategy for matching geometric objects in both 2D and 3D is discussed. The corresponding Euler-Lagrange equations are presented and gradient descent method is employed to solve the time dependent partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信