平均维数,宽度,和最优恢复的索波列夫类的函数对线

G. Magaril-Il'yaev
{"title":"平均维数,宽度,和最优恢复的索波列夫类的函数对线","authors":"G. Magaril-Il'yaev","doi":"10.1070/SM1993V074N02ABEH003352","DOIUrl":null,"url":null,"abstract":"The concept of mean dimension is introduced for a broad class of subspaces of , and analogues of the Kolmogorov widths, Bernstein widths, Gel'fand widths, and linear widths are defined. The precise values of these quantities are computed for Sobolev classes of functions on in compatible metrics, and the corresponding extremal spaces and operators are described. A closely related problem of optimal recovery of functions in Sobolev classes is also studied.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"MEAN DIMENSION, WIDTHS, AND OPTIMAL RECOVERY OF SOBOLEV CLASSES OF FUNCTIONS ON THE LINE\",\"authors\":\"G. Magaril-Il'yaev\",\"doi\":\"10.1070/SM1993V074N02ABEH003352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of mean dimension is introduced for a broad class of subspaces of , and analogues of the Kolmogorov widths, Bernstein widths, Gel'fand widths, and linear widths are defined. The precise values of these quantities are computed for Sobolev classes of functions on in compatible metrics, and the corresponding extremal spaces and operators are described. A closely related problem of optimal recovery of functions in Sobolev classes is also studied.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N02ABEH003352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N02ABEH003352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在广义子空间中引入了平均维数的概念,并定义了Kolmogorov宽度、Bernstein宽度、Gel'fand宽度和线性宽度的类似物。本文计算了相容度量上的Sobolev类函数的这些量的精确值,并描述了相应的极值空间和算子。研究了Sobolev类中函数的最优恢复问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEAN DIMENSION, WIDTHS, AND OPTIMAL RECOVERY OF SOBOLEV CLASSES OF FUNCTIONS ON THE LINE
The concept of mean dimension is introduced for a broad class of subspaces of , and analogues of the Kolmogorov widths, Bernstein widths, Gel'fand widths, and linear widths are defined. The precise values of these quantities are computed for Sobolev classes of functions on in compatible metrics, and the corresponding extremal spaces and operators are described. A closely related problem of optimal recovery of functions in Sobolev classes is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信