学习多类分类的最优公平评分系统

Julien Rouzot, Julien Ferry, Marie-José Huguet
{"title":"学习多类分类的最优公平评分系统","authors":"Julien Rouzot, Julien Ferry, Marie-José Huguet","doi":"10.1109/ICTAI56018.2022.00036","DOIUrl":null,"url":null,"abstract":"Machine Learning models are increasingly used for decision making, in particular in high-stakes applications such as credit scoring, medicine or recidivism prediction. However, there are growing concerns about these models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce. While the concepts of interpretability and fairness have been extensively studied by the scientific community in recent years, few works have tackled the general multi-class classification problem under fairness constraints, and none of them proposes to generate fair and interpretable models for multi-class classification. In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints, for the general multi-class classification setup. Our work generalizes the SLIM (Supersparse Linear Integer Models) framework that was proposed by Rudin and Ustun to learn optimal scoring systems for binary classification. The use of MILP techniques allows for an easy integration of diverse operational constraints (such as, but not restricted to, fairness or sparsity), but also for the building of certifiably optimal models (or sub-optimal models with bounded optimality gap).","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Optimal Fair Scoring Systems for Multi-Class Classification\",\"authors\":\"Julien Rouzot, Julien Ferry, Marie-José Huguet\",\"doi\":\"10.1109/ICTAI56018.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning models are increasingly used for decision making, in particular in high-stakes applications such as credit scoring, medicine or recidivism prediction. However, there are growing concerns about these models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce. While the concepts of interpretability and fairness have been extensively studied by the scientific community in recent years, few works have tackled the general multi-class classification problem under fairness constraints, and none of them proposes to generate fair and interpretable models for multi-class classification. In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints, for the general multi-class classification setup. Our work generalizes the SLIM (Supersparse Linear Integer Models) framework that was proposed by Rudin and Ustun to learn optimal scoring systems for binary classification. The use of MILP techniques allows for an easy integration of diverse operational constraints (such as, but not restricted to, fairness or sparsity), but also for the building of certifiably optimal models (or sub-optimal models with bounded optimality gap).\",\"PeriodicalId\":354314,\"journal\":{\"name\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI56018.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习模型越来越多地用于决策制定,特别是在高风险应用中,如信用评分、医学或累犯预测。然而,越来越多的人担心这些模型缺乏可解释性,以及它们可能产生或再现的不受欢迎的偏见。虽然近年来科学界对可解释性和公平性的概念进行了广泛的研究,但针对公平性约束下的一般多类分类问题的研究却很少,也没有针对多类分类生成公平和可解释性的模型。在本文中,我们使用混合整数线性规划(MILP)技术来生成在稀疏性和公平性约束下的固有可解释的评分系统,用于一般的多类分类设置。我们的工作推广了由Rudin和Ustun提出的SLIM(超稀疏线性整数模型)框架,用于学习二元分类的最优评分系统。MILP技术的使用可以方便地集成各种操作约束(例如,但不限于,公平性或稀疏性),也可以用于构建可证明的最优模型(或具有有限最优性差距的次最优模型)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Optimal Fair Scoring Systems for Multi-Class Classification
Machine Learning models are increasingly used for decision making, in particular in high-stakes applications such as credit scoring, medicine or recidivism prediction. However, there are growing concerns about these models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce. While the concepts of interpretability and fairness have been extensively studied by the scientific community in recent years, few works have tackled the general multi-class classification problem under fairness constraints, and none of them proposes to generate fair and interpretable models for multi-class classification. In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints, for the general multi-class classification setup. Our work generalizes the SLIM (Supersparse Linear Integer Models) framework that was proposed by Rudin and Ustun to learn optimal scoring systems for binary classification. The use of MILP techniques allows for an easy integration of diverse operational constraints (such as, but not restricted to, fairness or sparsity), but also for the building of certifiably optimal models (or sub-optimal models with bounded optimality gap).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信