基于流程挖掘的活动失效预测

M. Camara, Ibrahima Fall, G. Mendy, Samba Diaw
{"title":"基于流程挖掘的活动失效预测","authors":"M. Camara, Ibrahima Fall, G. Mendy, Samba Diaw","doi":"10.1109/ICSTCC.2015.7321401","DOIUrl":null,"url":null,"abstract":"Based on the state of the art of process mining, we can conclude that quality characteristics (failure rate metrics or loops) are poorly represented or absent in most predictive models that can be found in the literature. The main goal of this present research work is to analyze how to learn prediction model defining failure as response variable. A model of this type can be used for active real-time-controlling (e. g. through the reassignment of workflow activities based on prediction results) or for the automated support of redesign (i.e., prediction results are transformed in software requirements used to implement process improvements). The proposed methodology is based on the application of a data mining process because the objective of this work can be considered as a data mining goal.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Activity failure prediction based on process mining\",\"authors\":\"M. Camara, Ibrahima Fall, G. Mendy, Samba Diaw\",\"doi\":\"10.1109/ICSTCC.2015.7321401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the state of the art of process mining, we can conclude that quality characteristics (failure rate metrics or loops) are poorly represented or absent in most predictive models that can be found in the literature. The main goal of this present research work is to analyze how to learn prediction model defining failure as response variable. A model of this type can be used for active real-time-controlling (e. g. through the reassignment of workflow activities based on prediction results) or for the automated support of redesign (i.e., prediction results are transformed in software requirements used to implement process improvements). The proposed methodology is based on the application of a data mining process because the objective of this work can be considered as a data mining goal.\",\"PeriodicalId\":257135,\"journal\":{\"name\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2015.7321401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于过程挖掘技术的现状,我们可以得出结论,在文献中可以找到的大多数预测模型中,质量特征(故障率度量或循环)表现不佳或不存在。本研究的主要目的是分析如何学习以失效为响应变量的预测模型。这种类型的模型可以用于主动的实时控制(例如,通过基于预测结果的工作流活动的重新分配)或用于重新设计的自动化支持(例如,预测结果在用于实现过程改进的软件需求中进行转换)。所提出的方法是基于数据挖掘过程的应用,因为这项工作的目标可以被认为是一个数据挖掘目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity failure prediction based on process mining
Based on the state of the art of process mining, we can conclude that quality characteristics (failure rate metrics or loops) are poorly represented or absent in most predictive models that can be found in the literature. The main goal of this present research work is to analyze how to learn prediction model defining failure as response variable. A model of this type can be used for active real-time-controlling (e. g. through the reassignment of workflow activities based on prediction results) or for the automated support of redesign (i.e., prediction results are transformed in software requirements used to implement process improvements). The proposed methodology is based on the application of a data mining process because the objective of this work can be considered as a data mining goal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信