离散事件仿真中的梯度/灵敏度估计

S. Strickland
{"title":"离散事件仿真中的梯度/灵敏度估计","authors":"S. Strickland","doi":"10.1109/WSC.1993.718034","DOIUrl":null,"url":null,"abstract":"We consider methods for simultaneously estimating the gradient (resp. sensitivity) of J with respect to a continuous (resp. discrete) parameter /spl theta/. While one can always estimate a derivative (or sensitivity) by performing two distinct simulations at different values of /spl theta/ (and forming the estimate (J/spl theta/', - J/spl theta/2)/(/spl theta/' - /spl theta/)), here we focus on methods which compute estimates from a single sample path (though multiple replications can be used to reduce variance and compute confidence intervals). When applicable, these single run methods are often computationally more efficient. They also have applications beyond simulation (e.g. in on-line optimization and control).","PeriodicalId":177234,"journal":{"name":"Proceedings of 1993 Winter Simulation Conference - (WSC '93)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gradient/sensitivity Estimation in Discrete-Event Simulation\",\"authors\":\"S. Strickland\",\"doi\":\"10.1109/WSC.1993.718034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider methods for simultaneously estimating the gradient (resp. sensitivity) of J with respect to a continuous (resp. discrete) parameter /spl theta/. While one can always estimate a derivative (or sensitivity) by performing two distinct simulations at different values of /spl theta/ (and forming the estimate (J/spl theta/', - J/spl theta/2)/(/spl theta/' - /spl theta/)), here we focus on methods which compute estimates from a single sample path (though multiple replications can be used to reduce variance and compute confidence intervals). When applicable, these single run methods are often computationally more efficient. They also have applications beyond simulation (e.g. in on-line optimization and control).\",\"PeriodicalId\":177234,\"journal\":{\"name\":\"Proceedings of 1993 Winter Simulation Conference - (WSC '93)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 Winter Simulation Conference - (WSC '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.1993.718034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 Winter Simulation Conference - (WSC '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.1993.718034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了同时估计梯度的方法。灵敏度)的J相对于一个连续的(响应。离散)参数/spl θ /。虽然人们总是可以通过在不同的/spl theta/值下执行两个不同的模拟来估计导数(或灵敏度)(并形成估计(J/spl theta/', - J/spl theta/2)/(/spl theta/' - /spl theta/)),但这里我们关注的是从单个样本路径计算估计的方法(尽管可以使用多个重复来减少方差和计算置信区间)。在适用的情况下,这些单次运行的方法通常在计算上更有效。它们也有仿真之外的应用(例如在线优化和控制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient/sensitivity Estimation in Discrete-Event Simulation
We consider methods for simultaneously estimating the gradient (resp. sensitivity) of J with respect to a continuous (resp. discrete) parameter /spl theta/. While one can always estimate a derivative (or sensitivity) by performing two distinct simulations at different values of /spl theta/ (and forming the estimate (J/spl theta/', - J/spl theta/2)/(/spl theta/' - /spl theta/)), here we focus on methods which compute estimates from a single sample path (though multiple replications can be used to reduce variance and compute confidence intervals). When applicable, these single run methods are often computationally more efficient. They also have applications beyond simulation (e.g. in on-line optimization and control).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信