CloudRanger:云原生系统的根本原因识别

Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Y. Wang, Pengfei Chen
{"title":"CloudRanger:云原生系统的根本原因识别","authors":"Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Y. Wang, Pengfei Chen","doi":"10.1109/CCGRID.2018.00076","DOIUrl":null,"url":null,"abstract":"As more and more systems are migrating to cloud environment, the cloud native system becomes a trend. This paper presents the challenges and implications when diagnosing root causes for cloud native systems by analyzing some real incidents occurred in IBM Bluemix (a large commercial cloud). To tackle these challenges, we propose CloudRanger, a novel system dedicated for cloud native systems. To make our system more general, we propose a dynamic causal relationship analysis approach to construct impact graphs amongst applications without given the topology. A heuristic investigation algorithm based on second-order random walk is proposed to identify the culprit services which are responsible for cloud incidents. Experimental results in both simulation environment and IBM Bluemix platform show that CloudRanger outperforms some state-of-the-art approaches with a 10% improvement in accuracy. It offers a fast identification of culprit services when an anomaly occurs. Moreover, this system can be deployed rapidly and easily in multiple kinds of cloud native systems without any predefined knowledge.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"CloudRanger: Root Cause Identification for Cloud Native Systems\",\"authors\":\"Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Y. Wang, Pengfei Chen\",\"doi\":\"10.1109/CCGRID.2018.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As more and more systems are migrating to cloud environment, the cloud native system becomes a trend. This paper presents the challenges and implications when diagnosing root causes for cloud native systems by analyzing some real incidents occurred in IBM Bluemix (a large commercial cloud). To tackle these challenges, we propose CloudRanger, a novel system dedicated for cloud native systems. To make our system more general, we propose a dynamic causal relationship analysis approach to construct impact graphs amongst applications without given the topology. A heuristic investigation algorithm based on second-order random walk is proposed to identify the culprit services which are responsible for cloud incidents. Experimental results in both simulation environment and IBM Bluemix platform show that CloudRanger outperforms some state-of-the-art approaches with a 10% improvement in accuracy. It offers a fast identification of culprit services when an anomaly occurs. Moreover, this system can be deployed rapidly and easily in multiple kinds of cloud native systems without any predefined knowledge.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

随着越来越多的系统向云环境迁移,云原生系统成为一种趋势。本文通过分析IBM Bluemix(一个大型商业云)中发生的一些真实事件,介绍了在诊断云原生系统的根本原因时所面临的挑战和影响。为了应对这些挑战,我们提出了CloudRanger,一个专门用于云原生系统的新系统。为了使我们的系统更具通用性,我们提出了一种动态因果关系分析方法,在不给定拓扑的情况下构建应用程序之间的影响图。提出了一种基于二阶随机漫步的启发式调查算法,用于识别导致云事件的罪魁祸首服务。在模拟环境和IBM Bluemix平台上的实验结果表明,CloudRanger的准确率比一些最先进的方法提高了10%。当异常发生时,它提供了对罪魁祸首服务的快速识别。此外,该系统可以快速、轻松地部署在多种云原生系统中,无需任何预先定义的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CloudRanger: Root Cause Identification for Cloud Native Systems
As more and more systems are migrating to cloud environment, the cloud native system becomes a trend. This paper presents the challenges and implications when diagnosing root causes for cloud native systems by analyzing some real incidents occurred in IBM Bluemix (a large commercial cloud). To tackle these challenges, we propose CloudRanger, a novel system dedicated for cloud native systems. To make our system more general, we propose a dynamic causal relationship analysis approach to construct impact graphs amongst applications without given the topology. A heuristic investigation algorithm based on second-order random walk is proposed to identify the culprit services which are responsible for cloud incidents. Experimental results in both simulation environment and IBM Bluemix platform show that CloudRanger outperforms some state-of-the-art approaches with a 10% improvement in accuracy. It offers a fast identification of culprit services when an anomaly occurs. Moreover, this system can be deployed rapidly and easily in multiple kinds of cloud native systems without any predefined knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信