Jason L. Merrell, Nathan W. Gray, J. Bolke, A. N. Merrell, A. Prax, Jonathan Demke, Nikolas W. Gossett
{"title":"实现轴上InSb晶体生长,用于大批量晶圆生产:表征和消除红外焦平面阵列应用的电气性能变化","authors":"Jason L. Merrell, Nathan W. Gray, J. Bolke, A. N. Merrell, A. Prax, Jonathan Demke, Nikolas W. Gossett","doi":"10.1117/12.2223956","DOIUrl":null,"url":null,"abstract":"InSb focal plane array (FPA) detectors are key components in IR imaging systems that significantly impact both cost and performance. Detector performance is affected by the electronic and crystallographic quality and uniformity of the semiconductor substrate. High-volume, high-yield production of InSb wafers to the standards required for FPA device manufacture requires growth of on-axis {111} crystals. An inherent source of variation hindering on-axis Czochralski crystal growth is anisotropic dopant incorporation. We report on newly developed growth methods that eliminate the negative effects of anisotropic dopant incorporation enabling high volume manufacturing of {111}-oriented substrates and discuss the consequential manufacturing benefits. We also report on a characterization technique to characterize microscale dopant variation across the wafer.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enabling on-axis InSb crystal growth for high-volume wafer production: characterizing and eliminating variation in electrical performance for IR focal plane array applications\",\"authors\":\"Jason L. Merrell, Nathan W. Gray, J. Bolke, A. N. Merrell, A. Prax, Jonathan Demke, Nikolas W. Gossett\",\"doi\":\"10.1117/12.2223956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"InSb focal plane array (FPA) detectors are key components in IR imaging systems that significantly impact both cost and performance. Detector performance is affected by the electronic and crystallographic quality and uniformity of the semiconductor substrate. High-volume, high-yield production of InSb wafers to the standards required for FPA device manufacture requires growth of on-axis {111} crystals. An inherent source of variation hindering on-axis Czochralski crystal growth is anisotropic dopant incorporation. We report on newly developed growth methods that eliminate the negative effects of anisotropic dopant incorporation enabling high volume manufacturing of {111}-oriented substrates and discuss the consequential manufacturing benefits. We also report on a characterization technique to characterize microscale dopant variation across the wafer.\",\"PeriodicalId\":222501,\"journal\":{\"name\":\"SPIE Defense + Security\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2223956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2223956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling on-axis InSb crystal growth for high-volume wafer production: characterizing and eliminating variation in electrical performance for IR focal plane array applications
InSb focal plane array (FPA) detectors are key components in IR imaging systems that significantly impact both cost and performance. Detector performance is affected by the electronic and crystallographic quality and uniformity of the semiconductor substrate. High-volume, high-yield production of InSb wafers to the standards required for FPA device manufacture requires growth of on-axis {111} crystals. An inherent source of variation hindering on-axis Czochralski crystal growth is anisotropic dopant incorporation. We report on newly developed growth methods that eliminate the negative effects of anisotropic dopant incorporation enabling high volume manufacturing of {111}-oriented substrates and discuss the consequential manufacturing benefits. We also report on a characterization technique to characterize microscale dopant variation across the wafer.