基于VR的社交虚拟世界中的用户推荐

Bing Chen, De-Nian Yang
{"title":"基于VR的社交虚拟世界中的用户推荐","authors":"Bing Chen, De-Nian Yang","doi":"10.1145/3511808.3557487","DOIUrl":null,"url":null,"abstract":"Social metaverse with VR has been viewed as a paradigm shift for social media. However, most traditional VR social platforms ignore emerging characteristics in a metaverse, thereby failing to boost user satisfaction. In this paper, we explore a scenario of socializing in metaverse with VR, which brings major advantages over conventional social media: 1) leverage flexible display of users' 360-degree viewports to satisfy individual user interests, 2) ensure the user feelings of co-existence, 3) prevent view obstruction to help users find friends in crowds, and 4) support socializing with digital twins. Therefore, we formulate the Co-presence, and Occlusion-aware Metaverse User Recommendation (COMUR) problem to recommend a set of rendered players for users in social metaverse with VR. We prove COMUR is an NP-hard optimization problem and design a dual-module deep graph learning framework (COMURNet) to recommend appropriate users for viewport display. Experimental results on real social metaverse datasets and a user study with Occulus Quest 2 manifest that the proposed model outperforms baseline approaches by at least 36.7% of solution quality.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"User Recommendation in Social Metaverse with VR\",\"authors\":\"Bing Chen, De-Nian Yang\",\"doi\":\"10.1145/3511808.3557487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social metaverse with VR has been viewed as a paradigm shift for social media. However, most traditional VR social platforms ignore emerging characteristics in a metaverse, thereby failing to boost user satisfaction. In this paper, we explore a scenario of socializing in metaverse with VR, which brings major advantages over conventional social media: 1) leverage flexible display of users' 360-degree viewports to satisfy individual user interests, 2) ensure the user feelings of co-existence, 3) prevent view obstruction to help users find friends in crowds, and 4) support socializing with digital twins. Therefore, we formulate the Co-presence, and Occlusion-aware Metaverse User Recommendation (COMUR) problem to recommend a set of rendered players for users in social metaverse with VR. We prove COMUR is an NP-hard optimization problem and design a dual-module deep graph learning framework (COMURNet) to recommend appropriate users for viewport display. Experimental results on real social metaverse datasets and a user study with Occulus Quest 2 manifest that the proposed model outperforms baseline approaches by at least 36.7% of solution quality.\",\"PeriodicalId\":389624,\"journal\":{\"name\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511808.3557487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虚拟现实的社交虚拟世界被视为社交媒体的范式转变。然而,大多数传统的VR社交平台忽略了虚拟世界中的新兴特征,从而未能提高用户满意度。在本文中,我们探索了虚拟现实在虚拟世界中的社交场景,它带来了传统社交媒体的主要优势:1)利用用户360度视角的灵活显示来满足个人用户的兴趣,2)确保用户共存的感觉,3)防止视野障碍,帮助用户在人群中找到朋友,4)支持与数字双胞胎的社交。因此,我们制定了共同存在和闭塞感知的虚拟现实用户推荐(COMUR)问题,为VR社交虚拟现实中的用户推荐一组渲染玩家。我们证明COMUR是一个NP-hard优化问题,并设计了一个双模块深度图学习框架(COMURNet)来推荐合适的视窗显示用户。在真实社会元数据集上的实验结果和使用Occulus Quest 2的用户研究表明,所提出的模型在解决方案质量上至少优于基线方法36.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User Recommendation in Social Metaverse with VR
Social metaverse with VR has been viewed as a paradigm shift for social media. However, most traditional VR social platforms ignore emerging characteristics in a metaverse, thereby failing to boost user satisfaction. In this paper, we explore a scenario of socializing in metaverse with VR, which brings major advantages over conventional social media: 1) leverage flexible display of users' 360-degree viewports to satisfy individual user interests, 2) ensure the user feelings of co-existence, 3) prevent view obstruction to help users find friends in crowds, and 4) support socializing with digital twins. Therefore, we formulate the Co-presence, and Occlusion-aware Metaverse User Recommendation (COMUR) problem to recommend a set of rendered players for users in social metaverse with VR. We prove COMUR is an NP-hard optimization problem and design a dual-module deep graph learning framework (COMURNet) to recommend appropriate users for viewport display. Experimental results on real social metaverse datasets and a user study with Occulus Quest 2 manifest that the proposed model outperforms baseline approaches by at least 36.7% of solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信