风力机设计软件Bladed中海上风力机支撑结构集成超单元建模的一致结构阻尼模型

W. Collier
{"title":"风力机设计软件Bladed中海上风力机支撑结构集成超单元建模的一致结构阻尼模型","authors":"W. Collier","doi":"10.1115/iowtc2019-7541","DOIUrl":null,"url":null,"abstract":"\n In aero-elastic simulation of offshore wind turbines, the support structure can be modelled using an “integrated” approach, where the jacket and tower and modelled explicitly as one structural body, or a “superelement” approach, where the jacket part of the support structure is included as a superelement. For integrated modelling, vibration mode shapes are calculated for the whole support structure. For a superelement approach, separate mode shapes are defined for superelement and the tower. The different modal basis makes it difficult to align the structural damping definition for the two approaches, meaning that manual tuning of the modal damping ratios has previously been necessary to achieve equivalent damping on the whole support structure for the two approaches. To provide a consistent damping approach, it is proposed to specify modal damping ratios or Rayleigh damping on a modal basis which is common to the two approaches: the support structure natural mode shapes. When damping is specified on the natural modes of the support structure, equivalent support structure damping is observed for superelement and integrated modelling approaches. This allows the target support structure damping ratios to be achieved easily and also facilitates studies to compare the superelement and integrated modelling approaches.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consistent Structural Damping Model for Integrated and Superelement Modelling of Offshore Wind Turbine Support Structures in Wind Turbine Design Software Bladed\",\"authors\":\"W. Collier\",\"doi\":\"10.1115/iowtc2019-7541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In aero-elastic simulation of offshore wind turbines, the support structure can be modelled using an “integrated” approach, where the jacket and tower and modelled explicitly as one structural body, or a “superelement” approach, where the jacket part of the support structure is included as a superelement. For integrated modelling, vibration mode shapes are calculated for the whole support structure. For a superelement approach, separate mode shapes are defined for superelement and the tower. The different modal basis makes it difficult to align the structural damping definition for the two approaches, meaning that manual tuning of the modal damping ratios has previously been necessary to achieve equivalent damping on the whole support structure for the two approaches. To provide a consistent damping approach, it is proposed to specify modal damping ratios or Rayleigh damping on a modal basis which is common to the two approaches: the support structure natural mode shapes. When damping is specified on the natural modes of the support structure, equivalent support structure damping is observed for superelement and integrated modelling approaches. This allows the target support structure damping ratios to be achieved easily and also facilitates studies to compare the superelement and integrated modelling approaches.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在海上风力涡轮机的气动弹性仿真中,支撑结构可以采用“集成”方法建模,其中导管套和塔架作为一个结构体明确建模,或者采用“超单元”方法,其中导管套部分作为一个超单元包括在支撑结构中。为了进行综合建模,计算了整个支撑结构的振型。对于超单元方法,为超单元和塔分别定义了模态振型。不同的模态基础使得很难对两种方法的结构阻尼定义进行对齐,这意味着以前需要手动调整模态阻尼比,以实现两种方法在整个支撑结构上的等效阻尼。为了提供一致的阻尼方法,建议在模态基础上指定模态阻尼比或瑞利阻尼,这是两种方法共同的:支撑结构的自然模态振型。当在支撑结构的自然模态上指定阻尼时,对于超单元和综合建模方法,可以观察到等效的支撑结构阻尼。这使得目标支撑结构阻尼比容易实现,也便于研究比较超单元和综合建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Consistent Structural Damping Model for Integrated and Superelement Modelling of Offshore Wind Turbine Support Structures in Wind Turbine Design Software Bladed
In aero-elastic simulation of offshore wind turbines, the support structure can be modelled using an “integrated” approach, where the jacket and tower and modelled explicitly as one structural body, or a “superelement” approach, where the jacket part of the support structure is included as a superelement. For integrated modelling, vibration mode shapes are calculated for the whole support structure. For a superelement approach, separate mode shapes are defined for superelement and the tower. The different modal basis makes it difficult to align the structural damping definition for the two approaches, meaning that manual tuning of the modal damping ratios has previously been necessary to achieve equivalent damping on the whole support structure for the two approaches. To provide a consistent damping approach, it is proposed to specify modal damping ratios or Rayleigh damping on a modal basis which is common to the two approaches: the support structure natural mode shapes. When damping is specified on the natural modes of the support structure, equivalent support structure damping is observed for superelement and integrated modelling approaches. This allows the target support structure damping ratios to be achieved easily and also facilitates studies to compare the superelement and integrated modelling approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信