Fahimeh Jamshidian Tehrani, B. Nasihatkon, Khaled E. Al-Qawasmi, M. Al-Mousa, R. Boostani
{"title":"一种高效分类器:核SVM-LDA","authors":"Fahimeh Jamshidian Tehrani, B. Nasihatkon, Khaled E. Al-Qawasmi, M. Al-Mousa, R. Boostani","doi":"10.1109/EICEEAI56378.2022.10050472","DOIUrl":null,"url":null,"abstract":"This study aims at designing an efficient combinatorial classifier, which fuses linear discriminant analysis (LDA) and kernel support vector machine (SVM) classifiers. The proposed method is called kernel SVM-LDA which benefits from global property of LDA, simultaneous with localized capability of SVM along with mapping ability of RBF kernel to project input data into a more separable high dimensional space. To assess the proposed scheme, Kernel SVM-LDA was applied to some standard datasets derived from UCI database and then compared to standard LDA and kernel SVM classifiers. Kernel SVM-LDA was also employed in cue-based brain computer interface to classify the left and right imagery movements. The results indicate that the introduced method is more superior to that of LDA and kernel SVM because it surpasses the counterparts in terms of robustness, complexity and performance.","PeriodicalId":426838,"journal":{"name":"2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI)","volume":"10 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Classifier: Kernel SVM-LDA\",\"authors\":\"Fahimeh Jamshidian Tehrani, B. Nasihatkon, Khaled E. Al-Qawasmi, M. Al-Mousa, R. Boostani\",\"doi\":\"10.1109/EICEEAI56378.2022.10050472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims at designing an efficient combinatorial classifier, which fuses linear discriminant analysis (LDA) and kernel support vector machine (SVM) classifiers. The proposed method is called kernel SVM-LDA which benefits from global property of LDA, simultaneous with localized capability of SVM along with mapping ability of RBF kernel to project input data into a more separable high dimensional space. To assess the proposed scheme, Kernel SVM-LDA was applied to some standard datasets derived from UCI database and then compared to standard LDA and kernel SVM classifiers. Kernel SVM-LDA was also employed in cue-based brain computer interface to classify the left and right imagery movements. The results indicate that the introduced method is more superior to that of LDA and kernel SVM because it surpasses the counterparts in terms of robustness, complexity and performance.\",\"PeriodicalId\":426838,\"journal\":{\"name\":\"2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI)\",\"volume\":\"10 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICEEAI56378.2022.10050472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICEEAI56378.2022.10050472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This study aims at designing an efficient combinatorial classifier, which fuses linear discriminant analysis (LDA) and kernel support vector machine (SVM) classifiers. The proposed method is called kernel SVM-LDA which benefits from global property of LDA, simultaneous with localized capability of SVM along with mapping ability of RBF kernel to project input data into a more separable high dimensional space. To assess the proposed scheme, Kernel SVM-LDA was applied to some standard datasets derived from UCI database and then compared to standard LDA and kernel SVM classifiers. Kernel SVM-LDA was also employed in cue-based brain computer interface to classify the left and right imagery movements. The results indicate that the introduced method is more superior to that of LDA and kernel SVM because it surpasses the counterparts in terms of robustness, complexity and performance.