具有能量收集的长期传感应用的电源管理

ENSSys '13 Pub Date : 2013-11-13 DOI:10.1145/2534208.2534213
P. Sommer, B. Kusy, R. Jurdak
{"title":"具有能量收集的长期传感应用的电源管理","authors":"P. Sommer, B. Kusy, R. Jurdak","doi":"10.1145/2534208.2534213","DOIUrl":null,"url":null,"abstract":"Power management of mobile embedded devices remains important with the slow growth of battery energy density relative to computing power. Estimating the state of charge (SOC) of battery is key for scheduling power intensive tasks, yet current approaches either require dedicated hardware, use battery voltage as a loose indicator of SOC, or track the net energy flow from the battery over time where inevitable small errors in instantaneous estimation can lead to large cumulative estimation errors and significantly degraded sampling strategies. In this paper, we propose a method for estimating SOC of a node's battery based on the conation of two noisy inputs: (1) the net current flow in the battery for instantaneous net energy flow estimation; and (2) the battery voltage as a measure of absolute SOC. Using empirical data from several weeks of flying fox tracking experiments, we validate our approach in terms of the accuracy of SOC prediction and show how SOC prediction can be used to adaptively schedule tasks for energy neutral operation of sensing applications.","PeriodicalId":155579,"journal":{"name":"ENSSys '13","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Power management for long-term sensing applications with energy harvesting\",\"authors\":\"P. Sommer, B. Kusy, R. Jurdak\",\"doi\":\"10.1145/2534208.2534213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power management of mobile embedded devices remains important with the slow growth of battery energy density relative to computing power. Estimating the state of charge (SOC) of battery is key for scheduling power intensive tasks, yet current approaches either require dedicated hardware, use battery voltage as a loose indicator of SOC, or track the net energy flow from the battery over time where inevitable small errors in instantaneous estimation can lead to large cumulative estimation errors and significantly degraded sampling strategies. In this paper, we propose a method for estimating SOC of a node's battery based on the conation of two noisy inputs: (1) the net current flow in the battery for instantaneous net energy flow estimation; and (2) the battery voltage as a measure of absolute SOC. Using empirical data from several weeks of flying fox tracking experiments, we validate our approach in terms of the accuracy of SOC prediction and show how SOC prediction can be used to adaptively schedule tasks for energy neutral operation of sensing applications.\",\"PeriodicalId\":155579,\"journal\":{\"name\":\"ENSSys '13\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENSSys '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534208.2534213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENSSys '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534208.2534213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着电池能量密度相对于计算能力的缓慢增长,移动嵌入式设备的电源管理仍然很重要。估计电池的充电状态(SOC)是调度电力密集型任务的关键,但目前的方法要么需要专用硬件,要么使用电池电压作为SOC的松散指标,要么跟踪电池随时间的净能量流,在瞬时估计中不可避免的小误差会导致大的累积估计误差和显著降低的采样策略。在本文中,我们提出了一种基于两个噪声输入的组合来估计节点电池SOC的方法:(1)用于瞬时净能量流估计的电池净电流;(2)电池电压作为绝对SOC的度量。利用几周的狐蝠跟踪实验的经验数据,我们在SOC预测的准确性方面验证了我们的方法,并展示了SOC预测如何用于自适应调度任务,以实现传感应用的能量中性操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power management for long-term sensing applications with energy harvesting
Power management of mobile embedded devices remains important with the slow growth of battery energy density relative to computing power. Estimating the state of charge (SOC) of battery is key for scheduling power intensive tasks, yet current approaches either require dedicated hardware, use battery voltage as a loose indicator of SOC, or track the net energy flow from the battery over time where inevitable small errors in instantaneous estimation can lead to large cumulative estimation errors and significantly degraded sampling strategies. In this paper, we propose a method for estimating SOC of a node's battery based on the conation of two noisy inputs: (1) the net current flow in the battery for instantaneous net energy flow estimation; and (2) the battery voltage as a measure of absolute SOC. Using empirical data from several weeks of flying fox tracking experiments, we validate our approach in terms of the accuracy of SOC prediction and show how SOC prediction can be used to adaptively schedule tasks for energy neutral operation of sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信