Meta-Labeling架构

M. Meyer, J. Joubert, Mesias Alfeus
{"title":"Meta-Labeling架构","authors":"M. Meyer, J. Joubert, Mesias Alfeus","doi":"10.3905/jfds.2022.1.108","DOIUrl":null,"url":null,"abstract":"Separating the side and size of a position allows for sophisticated strategy structures to be developed. Modeling the size component can be done through a meta-labeling approach. This article establishes several heterogeneous architectures to account for key aspects of meta-labeling. They serve as a guide for practitioners in the model development process, as well as for researchers to further build on these ideas. An architecture can be developed through the lens of feature- and/or strategy-driven approaches. The feature-driven approach exploits the way the information in the data is structured and how the selected models use that information, whereas a strategy-driven approach specifically aims to incorporate unique characteristics of the underlying trading strategy. Furthermore, the concept of inverse meta-labeling is introduced as a technique to improve the quantity and quality of the side forecasts.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Labeling Architecture\",\"authors\":\"M. Meyer, J. Joubert, Mesias Alfeus\",\"doi\":\"10.3905/jfds.2022.1.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separating the side and size of a position allows for sophisticated strategy structures to be developed. Modeling the size component can be done through a meta-labeling approach. This article establishes several heterogeneous architectures to account for key aspects of meta-labeling. They serve as a guide for practitioners in the model development process, as well as for researchers to further build on these ideas. An architecture can be developed through the lens of feature- and/or strategy-driven approaches. The feature-driven approach exploits the way the information in the data is structured and how the selected models use that information, whereas a strategy-driven approach specifically aims to incorporate unique characteristics of the underlying trading strategy. Furthermore, the concept of inverse meta-labeling is introduced as a technique to improve the quantity and quality of the side forecasts.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2022.1.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将仓位的侧面和规模分开,可以形成复杂的策略结构。可以通过元标记方法对size组件进行建模。本文建立了几个异构体系结构来解释元标签的关键方面。它们可以作为模型开发过程中的实践者的指南,也可以作为研究人员在这些思想的基础上进一步构建的指南。架构可以通过功能和/或策略驱动的方法进行开发。特征驱动的方法利用数据中信息的结构方式以及所选择的模型如何使用这些信息,而策略驱动的方法专门针对合并潜在交易策略的独特特征。此外,还引入了逆元标记的概念,作为一种提高侧预测数量和质量的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Labeling Architecture
Separating the side and size of a position allows for sophisticated strategy structures to be developed. Modeling the size component can be done through a meta-labeling approach. This article establishes several heterogeneous architectures to account for key aspects of meta-labeling. They serve as a guide for practitioners in the model development process, as well as for researchers to further build on these ideas. An architecture can be developed through the lens of feature- and/or strategy-driven approaches. The feature-driven approach exploits the way the information in the data is structured and how the selected models use that information, whereas a strategy-driven approach specifically aims to incorporate unique characteristics of the underlying trading strategy. Furthermore, the concept of inverse meta-labeling is introduced as a technique to improve the quantity and quality of the side forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信