Benjamin Abruzzo, D. Cappelleri, Philippos Mordohai
{"title":"基于非重叠视角的低成本异构机器人团队协同视觉定位方案","authors":"Benjamin Abruzzo, D. Cappelleri, Philippos Mordohai","doi":"10.1115/detc2019-97377","DOIUrl":null,"url":null,"abstract":"\n This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives\",\"authors\":\"Benjamin Abruzzo, D. Cappelleri, Philippos Mordohai\",\"doi\":\"10.1115/detc2019-97377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives
This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m.