{"title":"模块化粗糙模糊MLP:进化设计","authors":"Pabitra Mitra, S. Mitra, S. Pal","doi":"10.1109/ICCIMA.1999.798511","DOIUrl":null,"url":null,"abstract":"The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modular rough fuzzy MLP: evolutionary design\",\"authors\":\"Pabitra Mitra, S. Mitra, S. Pal\",\"doi\":\"10.1109/ICCIMA.1999.798511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.\",\"PeriodicalId\":110736,\"journal\":{\"name\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.1999.798511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.