基于剩余使用寿命估计的粒子滤波重采样算法比较

Limeng Guo, Yu Peng, Datong Liu, Yue Luo
{"title":"基于剩余使用寿命估计的粒子滤波重采样算法比较","authors":"Limeng Guo, Yu Peng, Datong Liu, Yue Luo","doi":"10.1109/ICPHM.2014.7036395","DOIUrl":null,"url":null,"abstract":"Due to the high performance on state tracking and predicting, particle filter (PF) algorithm has been utilized for diagnosis and prognosis in a variety of areas. Especially, PF can provide uncertainty representation and management on estimating the remaining useful life (RUL) of components and systems. However, particle degeneracy phenomenon limits its performance and application in most of the situations. Therefore, several re-sampling algorithms are proposed to alleviate this problem. Thus, different re-sampling algorithms should be focused and studied for the adaptability and applicability in RUL estimation. This work aims to compare the capabilities of different re-sampling algorithms and evaluate the performance in lithium-ion battery RUL prediction. Four re-sampling algorithms including multinomial re-sampling, residual re-sampling stratified re-sampling and systematic re-sampling are involved and analyzed. Actual battery test data sets from NASA PCoE are used to conduct experiments for evaluation and comparison. Moreover, some quantitative analysis metrics are applied to compare the results of battery RUL estimation.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Comparison of resampling algorithms for particle filter based remaining useful life estimation\",\"authors\":\"Limeng Guo, Yu Peng, Datong Liu, Yue Luo\",\"doi\":\"10.1109/ICPHM.2014.7036395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high performance on state tracking and predicting, particle filter (PF) algorithm has been utilized for diagnosis and prognosis in a variety of areas. Especially, PF can provide uncertainty representation and management on estimating the remaining useful life (RUL) of components and systems. However, particle degeneracy phenomenon limits its performance and application in most of the situations. Therefore, several re-sampling algorithms are proposed to alleviate this problem. Thus, different re-sampling algorithms should be focused and studied for the adaptability and applicability in RUL estimation. This work aims to compare the capabilities of different re-sampling algorithms and evaluate the performance in lithium-ion battery RUL prediction. Four re-sampling algorithms including multinomial re-sampling, residual re-sampling stratified re-sampling and systematic re-sampling are involved and analyzed. Actual battery test data sets from NASA PCoE are used to conduct experiments for evaluation and comparison. Moreover, some quantitative analysis metrics are applied to compare the results of battery RUL estimation.\",\"PeriodicalId\":376942,\"journal\":{\"name\":\"2014 International Conference on Prognostics and Health Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2014.7036395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

粒子滤波(PF)算法由于具有良好的状态跟踪和预测性能,已被广泛应用于各种领域的诊断和预测。特别是,PF可以为部件和系统的剩余使用寿命(RUL)的估计提供不确定性表示和管理。然而,粒子简并现象限制了它在大多数情况下的性能和应用。因此,提出了几种重采样算法来缓解这一问题。因此,不同的重采样算法在RUL估计中的适应性和适用性值得关注和研究。本研究旨在比较不同重采样算法的能力,并评估锂离子电池RUL预测的性能。分析了多项重抽样、残差重抽样、分层重抽样和系统重抽样四种重抽样算法。使用NASA PCoE的实际电池测试数据集进行实验,以进行评估和比较。此外,还应用了一些定量分析指标来比较电池RUL估计的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of resampling algorithms for particle filter based remaining useful life estimation
Due to the high performance on state tracking and predicting, particle filter (PF) algorithm has been utilized for diagnosis and prognosis in a variety of areas. Especially, PF can provide uncertainty representation and management on estimating the remaining useful life (RUL) of components and systems. However, particle degeneracy phenomenon limits its performance and application in most of the situations. Therefore, several re-sampling algorithms are proposed to alleviate this problem. Thus, different re-sampling algorithms should be focused and studied for the adaptability and applicability in RUL estimation. This work aims to compare the capabilities of different re-sampling algorithms and evaluate the performance in lithium-ion battery RUL prediction. Four re-sampling algorithms including multinomial re-sampling, residual re-sampling stratified re-sampling and systematic re-sampling are involved and analyzed. Actual battery test data sets from NASA PCoE are used to conduct experiments for evaluation and comparison. Moreover, some quantitative analysis metrics are applied to compare the results of battery RUL estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信