手眼机器人系统动态视觉定位的自适应控制技术

N. Papanikolopoulos, P. Khosla
{"title":"手眼机器人系统动态视觉定位的自适应控制技术","authors":"N. Papanikolopoulos, P. Khosla","doi":"10.1109/ACV.1992.240321","DOIUrl":null,"url":null,"abstract":"Using active monocular vision for 3-D visual control tasks is difficult since the translational and the rotational degrees of freedom are strongly coupled. The paper addresses several issues in 3-D visual control and presents adaptive control schemes for the problem of robotic visual servoing (eye-in-hand configuration) around a static rigid target. The objective is to move the image projections of several feature points of the static rigid target to some desired image positions. The inverse perspective transformation is assumed partially unknown. The adaptive controllers compensate for the servoing errors, the partially unknown camera parameters, and the computational delays which are introduced by the time-consuming vision algorithms. The authors present a stability analysis along with a study of the conditions that the feature points must satisfy in order for the problem to be solvable. Finally, several experimental results are presented to verify the validity and the efficacy of the proposed algorithms.<<ETX>>","PeriodicalId":153393,"journal":{"name":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive control techniques for dynamic visual repositioning of hand-eye robotic systems\",\"authors\":\"N. Papanikolopoulos, P. Khosla\",\"doi\":\"10.1109/ACV.1992.240321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using active monocular vision for 3-D visual control tasks is difficult since the translational and the rotational degrees of freedom are strongly coupled. The paper addresses several issues in 3-D visual control and presents adaptive control schemes for the problem of robotic visual servoing (eye-in-hand configuration) around a static rigid target. The objective is to move the image projections of several feature points of the static rigid target to some desired image positions. The inverse perspective transformation is assumed partially unknown. The adaptive controllers compensate for the servoing errors, the partially unknown camera parameters, and the computational delays which are introduced by the time-consuming vision algorithms. The authors present a stability analysis along with a study of the conditions that the feature points must satisfy in order for the problem to be solvable. Finally, several experimental results are presented to verify the validity and the efficacy of the proposed algorithms.<<ETX>>\",\"PeriodicalId\":153393,\"journal\":{\"name\":\"[1992] Proceedings IEEE Workshop on Applications of Computer Vision\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACV.1992.240321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1992.240321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于平移自由度和旋转自由度是强耦合的,利用主动单目视觉进行三维视觉控制是很困难的。本文讨论了三维视觉控制中的几个问题,提出了机器人围绕静态刚性目标的视觉伺服(眼手构型)问题的自适应控制方案。目标是将静态刚性目标的几个特征点的图像投影移动到期望的图像位置。假设透视逆变换部分未知。自适应控制器补偿了伺服误差、部分未知的摄像机参数以及由耗时的视觉算法引入的计算延迟。作者给出了稳定性分析,并研究了特征点为使问题可解所必须满足的条件。最后,给出了几个实验结果,验证了所提算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control techniques for dynamic visual repositioning of hand-eye robotic systems
Using active monocular vision for 3-D visual control tasks is difficult since the translational and the rotational degrees of freedom are strongly coupled. The paper addresses several issues in 3-D visual control and presents adaptive control schemes for the problem of robotic visual servoing (eye-in-hand configuration) around a static rigid target. The objective is to move the image projections of several feature points of the static rigid target to some desired image positions. The inverse perspective transformation is assumed partially unknown. The adaptive controllers compensate for the servoing errors, the partially unknown camera parameters, and the computational delays which are introduced by the time-consuming vision algorithms. The authors present a stability analysis along with a study of the conditions that the feature points must satisfy in order for the problem to be solvable. Finally, several experimental results are presented to verify the validity and the efficacy of the proposed algorithms.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信