从合成到分析:拟合人体动画模型到图像数据

P. Fua, Ralf Plänkers, D. Thalmann
{"title":"从合成到分析:拟合人体动画模型到图像数据","authors":"P. Fua, Ralf Plänkers, D. Thalmann","doi":"10.1109/CGI.1999.777889","DOIUrl":null,"url":null,"abstract":"We show that we can effectively fit complex animation models to noisy image data. Our approach is based on robust least squares adjustment and takes advantage of three complementary sources of information: stereo data, silhouette edges and 2D feature points. We take stereo to be our main information source and use the other two whenever available. In this way, complete head models-including ears and hair-can be acquired with a cheap and entirely passive sensor, such as an ordinary video camera. The motion parameters of limbs can be similarly captured. They can then be fed to existing animation software to produce synthetic sequences.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"From synthesis to analysis: fitting human animation models to image data\",\"authors\":\"P. Fua, Ralf Plänkers, D. Thalmann\",\"doi\":\"10.1109/CGI.1999.777889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that we can effectively fit complex animation models to noisy image data. Our approach is based on robust least squares adjustment and takes advantage of three complementary sources of information: stereo data, silhouette edges and 2D feature points. We take stereo to be our main information source and use the other two whenever available. In this way, complete head models-including ears and hair-can be acquired with a cheap and entirely passive sensor, such as an ordinary video camera. The motion parameters of limbs can be similarly captured. They can then be fed to existing animation software to produce synthetic sequences.\",\"PeriodicalId\":165593,\"journal\":{\"name\":\"1999 Proceedings Computer Graphics International\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Proceedings Computer Graphics International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGI.1999.777889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们证明了我们可以有效地将复杂的动画模型拟合到噪声图像数据中。我们的方法基于鲁棒最小二乘调整,并利用三个互补的信息源:立体数据、轮廓边缘和二维特征点。我们以立体声作为我们的主要信息源,并在可用的情况下使用其他两种。通过这种方式,完整的头部模型——包括耳朵和头发——可以用一个便宜的、完全被动的传感器获得,比如一个普通的摄像机。四肢的运动参数也可以被类似地捕获。然后,它们可以被输入到现有的动画软件中,生成合成序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From synthesis to analysis: fitting human animation models to image data
We show that we can effectively fit complex animation models to noisy image data. Our approach is based on robust least squares adjustment and takes advantage of three complementary sources of information: stereo data, silhouette edges and 2D feature points. We take stereo to be our main information source and use the other two whenever available. In this way, complete head models-including ears and hair-can be acquired with a cheap and entirely passive sensor, such as an ordinary video camera. The motion parameters of limbs can be similarly captured. They can then be fed to existing animation software to produce synthetic sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信